Properties

Label 2.2e8_5e2_7.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 5^{2} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$44800= 2^{8} \cdot 5^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 20 x^{6} + 100 x^{4} + 500 x^{2} - 4375 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 14.
Roots:
$r_{ 1 }$ $=$ $ 14 + 65\cdot 71 + 64\cdot 71^{2} + 4\cdot 71^{3} + 10\cdot 71^{4} + 11\cdot 71^{5} + 62\cdot 71^{6} + 12\cdot 71^{7} + 64\cdot 71^{8} + 2\cdot 71^{9} + 3\cdot 71^{10} + 63\cdot 71^{11} + 33\cdot 71^{12} + 8\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 15 + 57\cdot 71 + 52\cdot 71^{2} + 42\cdot 71^{3} + 25\cdot 71^{4} + 64\cdot 71^{5} + 46\cdot 71^{6} + 65\cdot 71^{7} + 29\cdot 71^{8} + 49\cdot 71^{9} + 57\cdot 71^{10} + 17\cdot 71^{11} + 23\cdot 71^{12} + 14\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 22 + 49\cdot 71 + 25\cdot 71^{2} + 55\cdot 71^{3} + 16\cdot 71^{4} + 52\cdot 71^{5} + 33\cdot 71^{6} + 67\cdot 71^{7} + 8\cdot 71^{8} + 57\cdot 71^{9} + 61\cdot 71^{10} + 64\cdot 71^{11} + 31\cdot 71^{12} + 3\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 31 + 43\cdot 71 + 67\cdot 71^{2} + 30\cdot 71^{3} + 70\cdot 71^{4} + 26\cdot 71^{5} + 46\cdot 71^{6} + 39\cdot 71^{7} + 25\cdot 71^{8} + 66\cdot 71^{9} + 24\cdot 71^{10} + 47\cdot 71^{11} + 42\cdot 71^{12} + 56\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 40 + 27\cdot 71 + 3\cdot 71^{2} + 40\cdot 71^{3} + 44\cdot 71^{5} + 24\cdot 71^{6} + 31\cdot 71^{7} + 45\cdot 71^{8} + 4\cdot 71^{9} + 46\cdot 71^{10} + 23\cdot 71^{11} + 28\cdot 71^{12} + 14\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 49 + 21\cdot 71 + 45\cdot 71^{2} + 15\cdot 71^{3} + 54\cdot 71^{4} + 18\cdot 71^{5} + 37\cdot 71^{6} + 3\cdot 71^{7} + 62\cdot 71^{8} + 13\cdot 71^{9} + 9\cdot 71^{10} + 6\cdot 71^{11} + 39\cdot 71^{12} + 67\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 56 + 13\cdot 71 + 18\cdot 71^{2} + 28\cdot 71^{3} + 45\cdot 71^{4} + 6\cdot 71^{5} + 24\cdot 71^{6} + 5\cdot 71^{7} + 41\cdot 71^{8} + 21\cdot 71^{9} + 13\cdot 71^{10} + 53\cdot 71^{11} + 47\cdot 71^{12} + 56\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 57 + 5\cdot 71 + 6\cdot 71^{2} + 66\cdot 71^{3} + 60\cdot 71^{4} + 59\cdot 71^{5} + 8\cdot 71^{6} + 58\cdot 71^{7} + 6\cdot 71^{8} + 68\cdot 71^{9} + 67\cdot 71^{10} + 7\cdot 71^{11} + 37\cdot 71^{12} + 62\cdot 71^{13} +O\left(71^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(3,6)(4,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,3,5,7,8,6,4,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,5)(3,6)(4,8)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$4$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$8$$(1,3,5,7,8,6,4,2)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,6,5,2,8,3,4,7)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.