Properties

Label 2.2e8_5e2.8t8.2c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 5^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$6400= 2^{8} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} + 10 x^{4} - 100 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 1 + 13\cdot 89 + 59\cdot 89^{2} + 56\cdot 89^{3} + 87\cdot 89^{4} + 32\cdot 89^{5} + 38\cdot 89^{6} + 35\cdot 89^{7} + 35\cdot 89^{8} + 69\cdot 89^{9} + 11\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 4 + 5\cdot 89 + 50\cdot 89^{2} + 53\cdot 89^{3} + 72\cdot 89^{4} + 5\cdot 89^{5} + 60\cdot 89^{6} + 85\cdot 89^{7} + 63\cdot 89^{8} + 9\cdot 89^{9} + 37\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 34 + 40\cdot 89 + 32\cdot 89^{2} + 16\cdot 89^{3} + 72\cdot 89^{4} + 77\cdot 89^{5} + 31\cdot 89^{6} + 6\cdot 89^{7} + 19\cdot 89^{8} + 35\cdot 89^{9} + 3\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 42 + 12\cdot 89 + 45\cdot 89^{2} + 19\cdot 89^{3} + 33\cdot 89^{4} + 77\cdot 89^{5} + 27\cdot 89^{6} + 5\cdot 89^{7} + 53\cdot 89^{8} + 71\cdot 89^{9} + 19\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 47 + 76\cdot 89 + 43\cdot 89^{2} + 69\cdot 89^{3} + 55\cdot 89^{4} + 11\cdot 89^{5} + 61\cdot 89^{6} + 83\cdot 89^{7} + 35\cdot 89^{8} + 17\cdot 89^{9} + 69\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 55 + 48\cdot 89 + 56\cdot 89^{2} + 72\cdot 89^{3} + 16\cdot 89^{4} + 11\cdot 89^{5} + 57\cdot 89^{6} + 82\cdot 89^{7} + 69\cdot 89^{8} + 53\cdot 89^{9} + 85\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 85 + 83\cdot 89 + 38\cdot 89^{2} + 35\cdot 89^{3} + 16\cdot 89^{4} + 83\cdot 89^{5} + 28\cdot 89^{6} + 3\cdot 89^{7} + 25\cdot 89^{8} + 79\cdot 89^{9} + 51\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 88 + 75\cdot 89 + 29\cdot 89^{2} + 32\cdot 89^{3} + 89^{4} + 56\cdot 89^{5} + 50\cdot 89^{6} + 53\cdot 89^{7} + 53\cdot 89^{8} + 19\cdot 89^{9} + 77\cdot 89^{10} +O\left(89^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,3)(4,5)(6,8)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,3)(4,5)(6,8)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$4$$4$$(1,5,8,4)(2,3,7,6)$$0$
$2$$8$$(1,4,3,7,8,5,6,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,5,3,2,8,4,6,7)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.