Properties

Label 2.2e8_5e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$6400= 2^{8} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 10 x^{4} - 100 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 13 + 46\cdot 61 + 45\cdot 61^{2} + 22\cdot 61^{3} + 43\cdot 61^{4} + 47\cdot 61^{5} + 12\cdot 61^{6} + 12\cdot 61^{7} + 60\cdot 61^{8} + 2\cdot 61^{9} +O\left(61^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 20 + 9\cdot 61 + 7\cdot 61^{2} + 47\cdot 61^{3} + 21\cdot 61^{4} + 24\cdot 61^{5} + 58\cdot 61^{6} + 60\cdot 61^{7} + 12\cdot 61^{8} + 16\cdot 61^{9} + 43\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 21 + 41\cdot 61 + 36\cdot 61^{2} + 43\cdot 61^{3} + 46\cdot 61^{4} + 7\cdot 61^{5} + 17\cdot 61^{6} + 57\cdot 61^{7} + 39\cdot 61^{8} + 42\cdot 61^{9} + 28\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 24 + 43\cdot 61 + 37\cdot 61^{2} + 10\cdot 61^{3} + 40\cdot 61^{4} + 4\cdot 61^{5} + 22\cdot 61^{6} + 42\cdot 61^{7} + 21\cdot 61^{8} + 20\cdot 61^{9} + 38\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 37 + 17\cdot 61 + 23\cdot 61^{2} + 50\cdot 61^{3} + 20\cdot 61^{4} + 56\cdot 61^{5} + 38\cdot 61^{6} + 18\cdot 61^{7} + 39\cdot 61^{8} + 40\cdot 61^{9} + 22\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 40 + 19\cdot 61 + 24\cdot 61^{2} + 17\cdot 61^{3} + 14\cdot 61^{4} + 53\cdot 61^{5} + 43\cdot 61^{6} + 3\cdot 61^{7} + 21\cdot 61^{8} + 18\cdot 61^{9} + 32\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 41 + 51\cdot 61 + 53\cdot 61^{2} + 13\cdot 61^{3} + 39\cdot 61^{4} + 36\cdot 61^{5} + 2\cdot 61^{6} + 48\cdot 61^{8} + 44\cdot 61^{9} + 17\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 48 + 14\cdot 61 + 15\cdot 61^{2} + 38\cdot 61^{3} + 17\cdot 61^{4} + 13\cdot 61^{5} + 48\cdot 61^{6} + 48\cdot 61^{7} + 58\cdot 61^{9} + 60\cdot 61^{10} +O\left(61^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,3,2,8,4,6,7)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,3)(4,5)(6,8)$ $0$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$ $0$
$4$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$ $0$
$2$ $8$ $(1,7,6,4,8,2,3,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,2,6,5,8,7,3,4)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.