Properties

Label 2.2e8_5e2.8t7.4
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{8} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$6400= 2^{8} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} + 20 x^{6} + 130 x^{4} + 280 x^{2} + 20 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 1 + 21\cdot 41 + 29\cdot 41^{2} + 2\cdot 41^{3} + 12\cdot 41^{4} + 16\cdot 41^{5} + 41^{6} + 25\cdot 41^{7} + 9\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 2 + 39\cdot 41 + 38\cdot 41^{2} + 6\cdot 41^{3} + 30\cdot 41^{4} + 19\cdot 41^{5} + 8\cdot 41^{6} + 32\cdot 41^{7} + 21\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 10 + 2\cdot 41 + 35\cdot 41^{2} + 4\cdot 41^{3} + 27\cdot 41^{4} + 16\cdot 41^{5} + 5\cdot 41^{6} + 10\cdot 41^{7} + 28\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 11 + 15\cdot 41 + 28\cdot 41^{2} + 34\cdot 41^{3} + 6\cdot 41^{4} + 24\cdot 41^{5} + 40\cdot 41^{6} + 38\cdot 41^{7} + 14\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 30 + 25\cdot 41 + 12\cdot 41^{2} + 6\cdot 41^{3} + 34\cdot 41^{4} + 16\cdot 41^{5} + 2\cdot 41^{7} + 26\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 31 + 38\cdot 41 + 5\cdot 41^{2} + 36\cdot 41^{3} + 13\cdot 41^{4} + 24\cdot 41^{5} + 35\cdot 41^{6} + 30\cdot 41^{7} + 12\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 39 + 41 + 2\cdot 41^{2} + 34\cdot 41^{3} + 10\cdot 41^{4} + 21\cdot 41^{5} + 32\cdot 41^{6} + 8\cdot 41^{7} + 19\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 40 + 19\cdot 41 + 11\cdot 41^{2} + 38\cdot 41^{3} + 28\cdot 41^{4} + 24\cdot 41^{5} + 39\cdot 41^{6} + 15\cdot 41^{7} + 31\cdot 41^{8} +O\left(41^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(3,6)(4,5)$
$(1,5,7,6,8,4,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$1$ $4$ $(1,7,8,2)(3,5,6,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,2,8,7)(3,4,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$ $0$
$2$ $8$ $(1,5,7,6,8,4,2,3)$ $0$ $0$
$2$ $8$ $(1,6,2,5,8,3,7,4)$ $0$ $0$
$2$ $8$ $(1,5,2,3,8,4,7,6)$ $0$ $0$
$2$ $8$ $(1,3,7,5,8,6,2,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.