Properties

Label 2.2e8_5e2.8t7.3
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{8} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$6400= 2^{8} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 60 x^{4} + 160 x^{2} + 20 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 28 + 106\cdot 131 + 70\cdot 131^{2} + 55\cdot 131^{3} + 102\cdot 131^{4} + 6\cdot 131^{5} + 96\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 33 + 14\cdot 131 + 32\cdot 131^{2} + 83\cdot 131^{3} + 97\cdot 131^{4} + 87\cdot 131^{5} + 51\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 61 + 3\cdot 131 + 108\cdot 131^{2} + 3\cdot 131^{3} + 38\cdot 131^{4} + 22\cdot 131^{5} + 4\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 63 + 45\cdot 131 + 57\cdot 131^{2} + 44\cdot 131^{3} + 4\cdot 131^{4} + 53\cdot 131^{5} + 71\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 68 + 85\cdot 131 + 73\cdot 131^{2} + 86\cdot 131^{3} + 126\cdot 131^{4} + 77\cdot 131^{5} + 59\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 70 + 127\cdot 131 + 22\cdot 131^{2} + 127\cdot 131^{3} + 92\cdot 131^{4} + 108\cdot 131^{5} + 126\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 98 + 116\cdot 131 + 98\cdot 131^{2} + 47\cdot 131^{3} + 33\cdot 131^{4} + 43\cdot 131^{5} + 79\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 103 + 24\cdot 131 + 60\cdot 131^{2} + 75\cdot 131^{3} + 28\cdot 131^{4} + 124\cdot 131^{5} + 34\cdot 131^{6} +O\left(131^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,4,2,3,8,5,7,6)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,8)(2,7)$ $0$ $0$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$ $0$
$2$ $8$ $(1,4,2,3,8,5,7,6)$ $0$ $0$
$2$ $8$ $(1,3,7,4,8,6,2,5)$ $0$ $0$
$2$ $8$ $(1,6,2,4,8,3,7,5)$ $0$ $0$
$2$ $8$ $(1,4,7,6,8,5,2,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.