Properties

Label 2.2e8_5e2.8t7.2c2
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{8} \cdot 5^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$6400= 2^{8} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 60 x^{4} - 160 x^{2} + 20 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd
Determinant: 1.5.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 3 + 89\cdot 281 + 89\cdot 281^{2} + 236\cdot 281^{3} + 166\cdot 281^{4} + 53\cdot 281^{5} + 94\cdot 281^{6} +O\left(281^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 73 + 126\cdot 281 + 197\cdot 281^{2} + 16\cdot 281^{3} + 110\cdot 281^{4} + 242\cdot 281^{5} + 64\cdot 281^{6} +O\left(281^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 121 + 107\cdot 281 + 164\cdot 281^{2} + 212\cdot 281^{3} + 100\cdot 281^{4} + 131\cdot 281^{5} + 20\cdot 281^{6} +O\left(281^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 134 + 108\cdot 281 + 8\cdot 281^{2} + 249\cdot 281^{3} + 13\cdot 281^{4} + 120\cdot 281^{5} + 162\cdot 281^{6} +O\left(281^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 147 + 172\cdot 281 + 272\cdot 281^{2} + 31\cdot 281^{3} + 267\cdot 281^{4} + 160\cdot 281^{5} + 118\cdot 281^{6} +O\left(281^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 160 + 173\cdot 281 + 116\cdot 281^{2} + 68\cdot 281^{3} + 180\cdot 281^{4} + 149\cdot 281^{5} + 260\cdot 281^{6} +O\left(281^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 208 + 154\cdot 281 + 83\cdot 281^{2} + 264\cdot 281^{3} + 170\cdot 281^{4} + 38\cdot 281^{5} + 216\cdot 281^{6} +O\left(281^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 278 + 191\cdot 281 + 191\cdot 281^{2} + 44\cdot 281^{3} + 114\cdot 281^{4} + 227\cdot 281^{5} + 186\cdot 281^{6} +O\left(281^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2,5,6,8,7,4,3)$
$(1,5,8,4)(2,6,7,3)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(2,7)(3,6)$$0$
$1$$4$$(1,5,8,4)(2,6,7,3)$$-2 \zeta_{4}$
$1$$4$$(1,4,8,5)(2,3,7,6)$$2 \zeta_{4}$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$2$$8$$(1,2,5,6,8,7,4,3)$$0$
$2$$8$$(1,6,4,2,8,3,5,7)$$0$
$2$$8$$(1,2,4,3,8,7,5,6)$$0$
$2$$8$$(1,3,5,2,8,6,4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.