Properties

Label 2.2e8_5e2.4t3.9c1
Dimension 2
Group $D_4$
Conductor $ 2^{8} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6400= 2^{8} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 20 x^{6} + 200 x^{4} - 500 x^{2} + 625 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 17 + 4\cdot 17^{2} + 15\cdot 17^{3} + 9\cdot 17^{4} + 13\cdot 17^{5} + 5\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 5 + 2\cdot 17 + 7\cdot 17^{2} + 13\cdot 17^{3} + 4\cdot 17^{4} + 11\cdot 17^{5} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 7 + 17 + 17^{2} + 12\cdot 17^{3} + 13\cdot 17^{4} + 6\cdot 17^{5} + 11\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 8 + 13\cdot 17 + 17^{2} + 17^{3} + 15\cdot 17^{4} + 8\cdot 17^{5} + 8\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 + 3\cdot 17 + 15\cdot 17^{2} + 15\cdot 17^{3} + 17^{4} + 8\cdot 17^{5} + 8\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 + 15\cdot 17 + 15\cdot 17^{2} + 4\cdot 17^{3} + 3\cdot 17^{4} + 10\cdot 17^{5} + 5\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 12 + 14\cdot 17 + 9\cdot 17^{2} + 3\cdot 17^{3} + 12\cdot 17^{4} + 5\cdot 17^{5} + 16\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 16 + 13\cdot 17 + 12\cdot 17^{2} + 17^{3} + 7\cdot 17^{4} + 3\cdot 17^{5} + 11\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.