Properties

Label 2.1280.8t17.b.a
Dimension $2$
Group $C_4\wr C_2$
Conductor $1280$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_4\wr C_2$
Conductor: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Artin stem field: Galois closure of 8.0.2097152000.5
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Determinant: 1.40.4t1.b.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.2000.1

Defining polynomial

$f(x)$$=$ \( x^{8} + 4x^{4} + 5 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 269 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 29 + 127\cdot 269 + 243\cdot 269^{2} + 31\cdot 269^{3} + 54\cdot 269^{4} + 269^{5} +O(269^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 41 + 150\cdot 269 + 255\cdot 269^{2} + 209\cdot 269^{3} + 187\cdot 269^{4} + 166\cdot 269^{5} +O(269^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 43 + 202\cdot 269 + 77\cdot 269^{2} + 38\cdot 269^{3} + 188\cdot 269^{4} + 157\cdot 269^{5} +O(269^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 134 + 268\cdot 269 + 146\cdot 269^{2} + 40\cdot 269^{3} + 79\cdot 269^{4} + 27\cdot 269^{5} +O(269^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 135 + 122\cdot 269^{2} + 228\cdot 269^{3} + 189\cdot 269^{4} + 241\cdot 269^{5} +O(269^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 226 + 66\cdot 269 + 191\cdot 269^{2} + 230\cdot 269^{3} + 80\cdot 269^{4} + 111\cdot 269^{5} +O(269^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 228 + 118\cdot 269 + 13\cdot 269^{2} + 59\cdot 269^{3} + 81\cdot 269^{4} + 102\cdot 269^{5} +O(269^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 240 + 141\cdot 269 + 25\cdot 269^{2} + 237\cdot 269^{3} + 214\cdot 269^{4} + 267\cdot 269^{5} +O(269^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5,7,4)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(2,7)(4,5)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$1$$4$$(1,3,8,6)(2,4,7,5)$$-2 \zeta_{4}$
$1$$4$$(1,6,8,3)(2,5,7,4)$$2 \zeta_{4}$
$2$$4$$(2,5,7,4)$$\zeta_{4} + 1$
$2$$4$$(2,4,7,5)$$-\zeta_{4} + 1$
$2$$4$$(1,8)(2,4,7,5)(3,6)$$-\zeta_{4} - 1$
$2$$4$$(1,8)(2,5,7,4)(3,6)$$\zeta_{4} - 1$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$4$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$8$$(1,2,3,4,8,7,6,5)$$0$
$4$$8$$(1,4,6,2,8,5,3,7)$$0$

The blue line marks the conjugacy class containing complex conjugation.