Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 67 }$ to precision 11.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 + 62\cdot 67 + 27\cdot 67^{2} + 51\cdot 67^{3} + 5\cdot 67^{4} + 66\cdot 67^{5} + 36\cdot 67^{6} + 40\cdot 67^{7} + 3\cdot 67^{8} + 45\cdot 67^{9} + 57\cdot 67^{10} +O\left(67^{ 11 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 9\cdot 67 + 27\cdot 67^{2} + 2\cdot 67^{3} + 44\cdot 67^{4} + 14\cdot 67^{5} + 46\cdot 67^{6} + 25\cdot 67^{7} + 40\cdot 67^{8} + 63\cdot 67^{9} +O\left(67^{ 11 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 17 + 48\cdot 67 + 66\cdot 67^{2} + 53\cdot 67^{3} + 55\cdot 67^{4} + 16\cdot 67^{5} + 49\cdot 67^{6} + 40\cdot 67^{7} + 15\cdot 67^{8} + 26\cdot 67^{9} + 37\cdot 67^{10} +O\left(67^{ 11 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 24 + 7\cdot 67 + 65\cdot 67^{2} + 14\cdot 67^{3} + 63\cdot 67^{4} + 32\cdot 67^{5} + 44\cdot 67^{6} + 56\cdot 67^{7} + 54\cdot 67^{8} + 21\cdot 67^{9} + 58\cdot 67^{10} +O\left(67^{ 11 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 43 + 59\cdot 67 + 67^{2} + 52\cdot 67^{3} + 3\cdot 67^{4} + 34\cdot 67^{5} + 22\cdot 67^{6} + 10\cdot 67^{7} + 12\cdot 67^{8} + 45\cdot 67^{9} + 8\cdot 67^{10} +O\left(67^{ 11 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 50 + 18\cdot 67 + 13\cdot 67^{3} + 11\cdot 67^{4} + 50\cdot 67^{5} + 17\cdot 67^{6} + 26\cdot 67^{7} + 51\cdot 67^{8} + 40\cdot 67^{9} + 29\cdot 67^{10} +O\left(67^{ 11 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 51 + 57\cdot 67 + 39\cdot 67^{2} + 64\cdot 67^{3} + 22\cdot 67^{4} + 52\cdot 67^{5} + 20\cdot 67^{6} + 41\cdot 67^{7} + 26\cdot 67^{8} + 3\cdot 67^{9} + 66\cdot 67^{10} +O\left(67^{ 11 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 54 + 4\cdot 67 + 39\cdot 67^{2} + 15\cdot 67^{3} + 61\cdot 67^{4} + 30\cdot 67^{6} + 26\cdot 67^{7} + 63\cdot 67^{8} + 21\cdot 67^{9} + 9\cdot 67^{10} +O\left(67^{ 11 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4,8,5)(2,6,7,3)$ |
| $(1,7,8,2)(3,4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-2$ |
| $2$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,4,6,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,3)(2,5,7,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.