Properties

Label 2.2e8_3e2_5e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$57600= 2^{8} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 90 x^{4} - 8100 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 16.
Roots:
$r_{ 1 }$ $=$ $ 9 + 10\cdot 61 + 28\cdot 61^{2} + 60\cdot 61^{3} + 24\cdot 61^{4} + 40\cdot 61^{5} + 56\cdot 61^{6} + 36\cdot 61^{7} + 6\cdot 61^{8} + 56\cdot 61^{9} + 53\cdot 61^{10} + 43\cdot 61^{11} + 57\cdot 61^{12} + 43\cdot 61^{13} + 46\cdot 61^{14} + 45\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 15 + 2\cdot 61 + 19\cdot 61^{2} + 37\cdot 61^{3} + 15\cdot 61^{4} + 7\cdot 61^{5} + 21\cdot 61^{6} + 25\cdot 61^{7} + 58\cdot 61^{8} + 48\cdot 61^{9} + 8\cdot 61^{10} + 56\cdot 61^{11} + 42\cdot 61^{12} + 47\cdot 61^{13} + 29\cdot 61^{14} + 40\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 18 + 54\cdot 61 + 36\cdot 61^{2} + 28\cdot 61^{3} + 20\cdot 61^{4} + 38\cdot 61^{5} + 8\cdot 61^{6} + 32\cdot 61^{7} + 59\cdot 61^{8} + 48\cdot 61^{9} + 15\cdot 61^{10} + 7\cdot 61^{11} + 10\cdot 61^{12} + 33\cdot 61^{13} + 49\cdot 61^{14} + 41\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 23 + 33\cdot 61 + 9\cdot 61^{2} + 13\cdot 61^{3} + 56\cdot 61^{4} + 52\cdot 61^{5} + 13\cdot 61^{6} + 10\cdot 61^{7} + 61^{8} + 61^{9} + 18\cdot 61^{10} + 61^{11} + 40\cdot 61^{12} + 53\cdot 61^{13} + 20\cdot 61^{14} + 53\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 38 + 27\cdot 61 + 51\cdot 61^{2} + 47\cdot 61^{3} + 4\cdot 61^{4} + 8\cdot 61^{5} + 47\cdot 61^{6} + 50\cdot 61^{7} + 59\cdot 61^{8} + 59\cdot 61^{9} + 42\cdot 61^{10} + 59\cdot 61^{11} + 20\cdot 61^{12} + 7\cdot 61^{13} + 40\cdot 61^{14} + 7\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 43 + 6\cdot 61 + 24\cdot 61^{2} + 32\cdot 61^{3} + 40\cdot 61^{4} + 22\cdot 61^{5} + 52\cdot 61^{6} + 28\cdot 61^{7} + 61^{8} + 12\cdot 61^{9} + 45\cdot 61^{10} + 53\cdot 61^{11} + 50\cdot 61^{12} + 27\cdot 61^{13} + 11\cdot 61^{14} + 19\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 46 + 58\cdot 61 + 41\cdot 61^{2} + 23\cdot 61^{3} + 45\cdot 61^{4} + 53\cdot 61^{5} + 39\cdot 61^{6} + 35\cdot 61^{7} + 2\cdot 61^{8} + 12\cdot 61^{9} + 52\cdot 61^{10} + 4\cdot 61^{11} + 18\cdot 61^{12} + 13\cdot 61^{13} + 31\cdot 61^{14} + 20\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 8 }$ $=$ $ 52 + 50\cdot 61 + 32\cdot 61^{2} + 36\cdot 61^{4} + 20\cdot 61^{5} + 4\cdot 61^{6} + 24\cdot 61^{7} + 54\cdot 61^{8} + 4\cdot 61^{9} + 7\cdot 61^{10} + 17\cdot 61^{11} + 3\cdot 61^{12} + 17\cdot 61^{13} + 14\cdot 61^{14} + 15\cdot 61^{15} +O\left(61^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(3,6)(4,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,5,7,8,6,4,2)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,5)(3,6)(4,8)$ $0$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$ $0$
$4$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$ $0$
$2$ $8$ $(1,3,5,7,8,6,4,2)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,6,5,2,8,3,4,7)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.