Properties

Label 2.2e8_3e2_5.8t8.2c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 3^{2} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$11520= 2^{8} \cdot 3^{2} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 12 x^{6} + 18 x^{4} + 216 x^{2} - 540 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 12.
Roots:
$r_{ 1 }$ $=$ $ 4 + 114\cdot 139 + 93\cdot 139^{2} + 18\cdot 139^{3} + 33\cdot 139^{4} + 22\cdot 139^{5} + 73\cdot 139^{6} + 96\cdot 139^{7} + 21\cdot 139^{8} + 82\cdot 139^{9} + 25\cdot 139^{10} + 113\cdot 139^{11} +O\left(139^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 10 + 69\cdot 139 + 27\cdot 139^{2} + 72\cdot 139^{3} + 86\cdot 139^{4} + 21\cdot 139^{5} + 127\cdot 139^{6} + 66\cdot 139^{7} + 64\cdot 139^{8} + 19\cdot 139^{9} + 91\cdot 139^{10} + 3\cdot 139^{11} +O\left(139^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 29 + 139 + 69\cdot 139^{2} + 72\cdot 139^{3} + 83\cdot 139^{4} + 45\cdot 139^{5} + 18\cdot 139^{6} + 11\cdot 139^{7} + 34\cdot 139^{8} + 134\cdot 139^{9} + 132\cdot 139^{10} + 5\cdot 139^{11} +O\left(139^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 58 + 31\cdot 139 + 133\cdot 139^{2} + 13\cdot 139^{3} + 132\cdot 139^{4} + 16\cdot 139^{5} + 104\cdot 139^{6} + 13\cdot 139^{7} + 7\cdot 139^{8} + 53\cdot 139^{9} + 53\cdot 139^{10} + 137\cdot 139^{11} +O\left(139^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 81 + 107\cdot 139 + 5\cdot 139^{2} + 125\cdot 139^{3} + 6\cdot 139^{4} + 122\cdot 139^{5} + 34\cdot 139^{6} + 125\cdot 139^{7} + 131\cdot 139^{8} + 85\cdot 139^{9} + 85\cdot 139^{10} + 139^{11} +O\left(139^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 110 + 137\cdot 139 + 69\cdot 139^{2} + 66\cdot 139^{3} + 55\cdot 139^{4} + 93\cdot 139^{5} + 120\cdot 139^{6} + 127\cdot 139^{7} + 104\cdot 139^{8} + 4\cdot 139^{9} + 6\cdot 139^{10} + 133\cdot 139^{11} +O\left(139^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 129 + 69\cdot 139 + 111\cdot 139^{2} + 66\cdot 139^{3} + 52\cdot 139^{4} + 117\cdot 139^{5} + 11\cdot 139^{6} + 72\cdot 139^{7} + 74\cdot 139^{8} + 119\cdot 139^{9} + 47\cdot 139^{10} + 135\cdot 139^{11} +O\left(139^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 135 + 24\cdot 139 + 45\cdot 139^{2} + 120\cdot 139^{3} + 105\cdot 139^{4} + 116\cdot 139^{5} + 65\cdot 139^{6} + 42\cdot 139^{7} + 117\cdot 139^{8} + 56\cdot 139^{9} + 113\cdot 139^{10} + 25\cdot 139^{11} +O\left(139^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,6)(3,7)(4,5)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(2,6)(3,7)(4,5)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$8$$(1,2,5,6,8,7,4,3)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,7,5,3,8,2,4,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.