Properties

Label 2.2e8_3e2_29e2.8t5.4c1
Dimension 2
Group $Q_8$
Conductor $ 2^{8} \cdot 3^{2} \cdot 29^{2}$
Root number not computed
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:$1937664= 2^{8} \cdot 3^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} + 348 x^{6} + 30276 x^{4} + 878004 x^{2} + 6365529 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 14.
Roots:
$r_{ 1 }$ $=$ $ 1 + 33\cdot 73 + 19\cdot 73^{2} + 12\cdot 73^{3} + 58\cdot 73^{4} + 15\cdot 73^{5} + 40\cdot 73^{6} + 38\cdot 73^{7} + 22\cdot 73^{8} + 26\cdot 73^{9} + 42\cdot 73^{10} + 33\cdot 73^{11} + 73^{12} + 59\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 25 + 34\cdot 73 + 63\cdot 73^{2} + 41\cdot 73^{3} + 64\cdot 73^{4} + 25\cdot 73^{5} + 39\cdot 73^{6} + 3\cdot 73^{7} + 15\cdot 73^{8} + 35\cdot 73^{9} + 62\cdot 73^{10} + 39\cdot 73^{11} + 38\cdot 73^{12} + 69\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 28 + 56\cdot 73 + 26\cdot 73^{2} + 46\cdot 73^{3} + 12\cdot 73^{4} + 61\cdot 73^{5} + 12\cdot 73^{6} + 73^{7} + 4\cdot 73^{8} + 8\cdot 73^{9} + 28\cdot 73^{10} + 29\cdot 73^{11} + 73^{12} + 59\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 33 + 28\cdot 73 + 14\cdot 73^{2} + 46\cdot 73^{3} + 22\cdot 73^{5} + 13\cdot 73^{6} + 48\cdot 73^{7} + 30\cdot 73^{8} + 5\cdot 73^{9} + 44\cdot 73^{10} + 30\cdot 73^{11} + 60\cdot 73^{12} + 30\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 40 + 44\cdot 73 + 58\cdot 73^{2} + 26\cdot 73^{3} + 72\cdot 73^{4} + 50\cdot 73^{5} + 59\cdot 73^{6} + 24\cdot 73^{7} + 42\cdot 73^{8} + 67\cdot 73^{9} + 28\cdot 73^{10} + 42\cdot 73^{11} + 12\cdot 73^{12} + 42\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 45 + 16\cdot 73 + 46\cdot 73^{2} + 26\cdot 73^{3} + 60\cdot 73^{4} + 11\cdot 73^{5} + 60\cdot 73^{6} + 71\cdot 73^{7} + 68\cdot 73^{8} + 64\cdot 73^{9} + 44\cdot 73^{10} + 43\cdot 73^{11} + 71\cdot 73^{12} + 13\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 48 + 38\cdot 73 + 9\cdot 73^{2} + 31\cdot 73^{3} + 8\cdot 73^{4} + 47\cdot 73^{5} + 33\cdot 73^{6} + 69\cdot 73^{7} + 57\cdot 73^{8} + 37\cdot 73^{9} + 10\cdot 73^{10} + 33\cdot 73^{11} + 34\cdot 73^{12} + 3\cdot 73^{13} +O\left(73^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 72 + 39\cdot 73 + 53\cdot 73^{2} + 60\cdot 73^{3} + 14\cdot 73^{4} + 57\cdot 73^{5} + 32\cdot 73^{6} + 34\cdot 73^{7} + 50\cdot 73^{8} + 46\cdot 73^{9} + 30\cdot 73^{10} + 39\cdot 73^{11} + 71\cdot 73^{12} + 13\cdot 73^{13} +O\left(73^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.