Properties

Label 2.2e8_3e2_23e2.8t5.2c1
Dimension 2
Group $Q_8$
Conductor $ 2^{8} \cdot 3^{2} \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:$1218816= 2^{8} \cdot 3^{2} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} + 276 x^{6} + 19044 x^{4} + 438012 x^{2} + 2518569 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 14.
Roots:
$r_{ 1 }$ $=$ $ 6 + 13\cdot 71 + 36\cdot 71^{2} + 38\cdot 71^{3} + 38\cdot 71^{4} + 21\cdot 71^{5} + 71^{6} + 37\cdot 71^{7} + 39\cdot 71^{8} + 64\cdot 71^{9} + 51\cdot 71^{10} + 26\cdot 71^{11} + 21\cdot 71^{12} + 25\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 7 + 63\cdot 71 + 63\cdot 71^{2} + 35\cdot 71^{3} + 8\cdot 71^{4} + 5\cdot 71^{5} + 69\cdot 71^{6} + 57\cdot 71^{7} + 31\cdot 71^{8} + 68\cdot 71^{9} + 60\cdot 71^{10} + 31\cdot 71^{11} + 12\cdot 71^{12} + 12\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 11 + 49\cdot 71 + 28\cdot 71^{2} + 32\cdot 71^{3} + 38\cdot 71^{4} + 33\cdot 71^{5} + 49\cdot 71^{6} + 61\cdot 71^{7} + 42\cdot 71^{8} + 19\cdot 71^{9} + 35\cdot 71^{10} + 13\cdot 71^{11} + 22\cdot 71^{12} + 36\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 21 + 22\cdot 71 + 36\cdot 71^{2} + 8\cdot 71^{3} + 50\cdot 71^{4} + 8\cdot 71^{5} + 64\cdot 71^{6} + 55\cdot 71^{7} + 44\cdot 71^{8} + 13\cdot 71^{9} + 52\cdot 71^{10} + 18\cdot 71^{11} + 48\cdot 71^{12} + 52\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 50 + 48\cdot 71 + 34\cdot 71^{2} + 62\cdot 71^{3} + 20\cdot 71^{4} + 62\cdot 71^{5} + 6\cdot 71^{6} + 15\cdot 71^{7} + 26\cdot 71^{8} + 57\cdot 71^{9} + 18\cdot 71^{10} + 52\cdot 71^{11} + 22\cdot 71^{12} + 18\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 60 + 21\cdot 71 + 42\cdot 71^{2} + 38\cdot 71^{3} + 32\cdot 71^{4} + 37\cdot 71^{5} + 21\cdot 71^{6} + 9\cdot 71^{7} + 28\cdot 71^{8} + 51\cdot 71^{9} + 35\cdot 71^{10} + 57\cdot 71^{11} + 48\cdot 71^{12} + 34\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 64 + 7\cdot 71 + 7\cdot 71^{2} + 35\cdot 71^{3} + 62\cdot 71^{4} + 65\cdot 71^{5} + 71^{6} + 13\cdot 71^{7} + 39\cdot 71^{8} + 2\cdot 71^{9} + 10\cdot 71^{10} + 39\cdot 71^{11} + 58\cdot 71^{12} + 58\cdot 71^{13} +O\left(71^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 65 + 57\cdot 71 + 34\cdot 71^{2} + 32\cdot 71^{3} + 32\cdot 71^{4} + 49\cdot 71^{5} + 69\cdot 71^{6} + 33\cdot 71^{7} + 31\cdot 71^{8} + 6\cdot 71^{9} + 19\cdot 71^{10} + 44\cdot 71^{11} + 49\cdot 71^{12} + 45\cdot 71^{13} +O\left(71^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.