Properties

Label 2.2e8_3e2_17e2.8t5.5
Dimension 2
Group $Q_8$
Conductor $ 2^{8} \cdot 3^{2} \cdot 17^{2}$
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:$665856= 2^{8} \cdot 3^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 204 x^{6} + 10404 x^{4} - 176868 x^{2} + 751689 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 13.
Roots:
$r_{ 1 }$ $=$ $ 1 + 43\cdot 73 + 18\cdot 73^{2} + 26\cdot 73^{3} + 42\cdot 73^{4} + 26\cdot 73^{5} + 10\cdot 73^{6} + 19\cdot 73^{7} + 29\cdot 73^{8} + 2\cdot 73^{9} + 45\cdot 73^{10} + 68\cdot 73^{11} + 17\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 8 + 8\cdot 73 + 35\cdot 73^{2} + 43\cdot 73^{3} + 64\cdot 73^{4} + 67\cdot 73^{5} + 37\cdot 73^{6} + 35\cdot 73^{7} + 38\cdot 73^{8} + 19\cdot 73^{9} + 56\cdot 73^{10} + 45\cdot 73^{11} +O\left(73^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 28 + 44\cdot 73 + 9\cdot 73^{2} + 57\cdot 73^{3} + 29\cdot 73^{4} + 53\cdot 73^{5} + 56\cdot 73^{6} + 49\cdot 73^{7} + 50\cdot 73^{8} + 8\cdot 73^{9} + 53\cdot 73^{10} + 63\cdot 73^{11} + 45\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 31 + 53\cdot 73 + 69\cdot 73^{2} + 7\cdot 73^{3} + 31\cdot 73^{4} + 24\cdot 73^{5} + 41\cdot 73^{6} + 67\cdot 73^{7} + 6\cdot 73^{8} + 37\cdot 73^{9} + 20\cdot 73^{10} + 48\cdot 73^{11} + 70\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 42 + 19\cdot 73 + 3\cdot 73^{2} + 65\cdot 73^{3} + 41\cdot 73^{4} + 48\cdot 73^{5} + 31\cdot 73^{6} + 5\cdot 73^{7} + 66\cdot 73^{8} + 35\cdot 73^{9} + 52\cdot 73^{10} + 24\cdot 73^{11} + 2\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 45 + 28\cdot 73 + 63\cdot 73^{2} + 15\cdot 73^{3} + 43\cdot 73^{4} + 19\cdot 73^{5} + 16\cdot 73^{6} + 23\cdot 73^{7} + 22\cdot 73^{8} + 64\cdot 73^{9} + 19\cdot 73^{10} + 9\cdot 73^{11} + 27\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 65 + 64\cdot 73 + 37\cdot 73^{2} + 29\cdot 73^{3} + 8\cdot 73^{4} + 5\cdot 73^{5} + 35\cdot 73^{6} + 37\cdot 73^{7} + 34\cdot 73^{8} + 53\cdot 73^{9} + 16\cdot 73^{10} + 27\cdot 73^{11} + 72\cdot 73^{12} +O\left(73^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 72 + 29\cdot 73 + 54\cdot 73^{2} + 46\cdot 73^{3} + 30\cdot 73^{4} + 46\cdot 73^{5} + 62\cdot 73^{6} + 53\cdot 73^{7} + 43\cdot 73^{8} + 70\cdot 73^{9} + 27\cdot 73^{10} + 4\cdot 73^{11} + 55\cdot 73^{12} +O\left(73^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,3,8,6)(2,4,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.