Properties

Label 2.389376.8t5.f.a
Dimension $2$
Group $Q_8$
Conductor $389376$
Root number $-1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(389376\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 13^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin field: Galois closure of 8.0.349317894242304.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{2}, \sqrt{3})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 156x^{6} + 6084x^{4} + 79092x^{2} + 257049 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 10.

Roots:
$r_{ 1 }$ $=$ \( 13 + 51\cdot 71 + 10\cdot 71^{2} + 43\cdot 71^{3} + 50\cdot 71^{4} + 22\cdot 71^{5} + 37\cdot 71^{6} + 9\cdot 71^{7} + 36\cdot 71^{8} + 56\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 24 + 31\cdot 71 + 57\cdot 71^{2} + 3\cdot 71^{3} + 21\cdot 71^{4} + 11\cdot 71^{5} + 57\cdot 71^{6} + 10\cdot 71^{7} + 57\cdot 71^{8} + 69\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 27 + 19\cdot 71 + 68\cdot 71^{2} + 56\cdot 71^{3} + 42\cdot 71^{4} + 56\cdot 71^{5} + 14\cdot 71^{6} + 7\cdot 71^{7} + 53\cdot 71^{8} + 15\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 28 + 50\cdot 71 + 27\cdot 71^{2} + 4\cdot 71^{3} + 9\cdot 71^{4} + 56\cdot 71^{5} + 45\cdot 71^{6} + 33\cdot 71^{7} + 47\cdot 71^{8} + 49\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 43 + 20\cdot 71 + 43\cdot 71^{2} + 66\cdot 71^{3} + 61\cdot 71^{4} + 14\cdot 71^{5} + 25\cdot 71^{6} + 37\cdot 71^{7} + 23\cdot 71^{8} + 21\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 44 + 51\cdot 71 + 2\cdot 71^{2} + 14\cdot 71^{3} + 28\cdot 71^{4} + 14\cdot 71^{5} + 56\cdot 71^{6} + 63\cdot 71^{7} + 17\cdot 71^{8} + 55\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 47 + 39\cdot 71 + 13\cdot 71^{2} + 67\cdot 71^{3} + 49\cdot 71^{4} + 59\cdot 71^{5} + 13\cdot 71^{6} + 60\cdot 71^{7} + 13\cdot 71^{8} + 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 58 + 19\cdot 71 + 60\cdot 71^{2} + 27\cdot 71^{3} + 20\cdot 71^{4} + 48\cdot 71^{5} + 33\cdot 71^{6} + 61\cdot 71^{7} + 34\cdot 71^{8} + 14\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$