Basic invariants
| Dimension: | $2$ |
| Group: | $Q_8$ |
| Conductor: | \(389376\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 13^{2} \) |
| Frobenius-Schur indicator: | $-1$ |
| Root number: | $-1$ |
| Artin field: | Galois closure of 8.0.349317894242304.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $Q_8$ |
| Parity: | even |
| Determinant: | 1.1.1t1.a.a |
| Projective image: | $C_2^2$ |
| Projective field: | Galois closure of \(\Q(\sqrt{2}, \sqrt{3})\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{8} + 156x^{6} + 6084x^{4} + 79092x^{2} + 257049 \)
|
The roots of $f$ are computed in $\Q_{ 71 }$ to precision 10.
Roots:
| $r_{ 1 }$ | $=$ |
\( 13 + 51\cdot 71 + 10\cdot 71^{2} + 43\cdot 71^{3} + 50\cdot 71^{4} + 22\cdot 71^{5} + 37\cdot 71^{6} + 9\cdot 71^{7} + 36\cdot 71^{8} + 56\cdot 71^{9} +O(71^{10})\)
|
| $r_{ 2 }$ | $=$ |
\( 24 + 31\cdot 71 + 57\cdot 71^{2} + 3\cdot 71^{3} + 21\cdot 71^{4} + 11\cdot 71^{5} + 57\cdot 71^{6} + 10\cdot 71^{7} + 57\cdot 71^{8} + 69\cdot 71^{9} +O(71^{10})\)
|
| $r_{ 3 }$ | $=$ |
\( 27 + 19\cdot 71 + 68\cdot 71^{2} + 56\cdot 71^{3} + 42\cdot 71^{4} + 56\cdot 71^{5} + 14\cdot 71^{6} + 7\cdot 71^{7} + 53\cdot 71^{8} + 15\cdot 71^{9} +O(71^{10})\)
|
| $r_{ 4 }$ | $=$ |
\( 28 + 50\cdot 71 + 27\cdot 71^{2} + 4\cdot 71^{3} + 9\cdot 71^{4} + 56\cdot 71^{5} + 45\cdot 71^{6} + 33\cdot 71^{7} + 47\cdot 71^{8} + 49\cdot 71^{9} +O(71^{10})\)
|
| $r_{ 5 }$ | $=$ |
\( 43 + 20\cdot 71 + 43\cdot 71^{2} + 66\cdot 71^{3} + 61\cdot 71^{4} + 14\cdot 71^{5} + 25\cdot 71^{6} + 37\cdot 71^{7} + 23\cdot 71^{8} + 21\cdot 71^{9} +O(71^{10})\)
|
| $r_{ 6 }$ | $=$ |
\( 44 + 51\cdot 71 + 2\cdot 71^{2} + 14\cdot 71^{3} + 28\cdot 71^{4} + 14\cdot 71^{5} + 56\cdot 71^{6} + 63\cdot 71^{7} + 17\cdot 71^{8} + 55\cdot 71^{9} +O(71^{10})\)
|
| $r_{ 7 }$ | $=$ |
\( 47 + 39\cdot 71 + 13\cdot 71^{2} + 67\cdot 71^{3} + 49\cdot 71^{4} + 59\cdot 71^{5} + 13\cdot 71^{6} + 60\cdot 71^{7} + 13\cdot 71^{8} + 71^{9} +O(71^{10})\)
|
| $r_{ 8 }$ | $=$ |
\( 58 + 19\cdot 71 + 60\cdot 71^{2} + 27\cdot 71^{3} + 20\cdot 71^{4} + 48\cdot 71^{5} + 33\cdot 71^{6} + 61\cdot 71^{7} + 34\cdot 71^{8} + 14\cdot 71^{9} +O(71^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ | ✓ |
| $2$ | $4$ | $(1,4,8,5)(2,3,7,6)$ | $0$ | |
| $2$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $0$ | |
| $2$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $0$ |