Properties

Label 2.2e8_3e2_13e2.8t5.6
Dimension 2
Group $Q_8$
Conductor $ 2^{8} \cdot 3^{2} \cdot 13^{2}$
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:$389376= 2^{8} \cdot 3^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} + 156 x^{6} + 6084 x^{4} + 79092 x^{2} + 257049 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 13.
Roots:
$r_{ 1 }$ $=$ $ 13 + 51\cdot 71 + 10\cdot 71^{2} + 43\cdot 71^{3} + 50\cdot 71^{4} + 22\cdot 71^{5} + 37\cdot 71^{6} + 9\cdot 71^{7} + 36\cdot 71^{8} + 56\cdot 71^{9} + 24\cdot 71^{10} + 13\cdot 71^{11} + 13\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 24 + 31\cdot 71 + 57\cdot 71^{2} + 3\cdot 71^{3} + 21\cdot 71^{4} + 11\cdot 71^{5} + 57\cdot 71^{6} + 10\cdot 71^{7} + 57\cdot 71^{8} + 69\cdot 71^{9} + 63\cdot 71^{10} + 56\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 27 + 19\cdot 71 + 68\cdot 71^{2} + 56\cdot 71^{3} + 42\cdot 71^{4} + 56\cdot 71^{5} + 14\cdot 71^{6} + 7\cdot 71^{7} + 53\cdot 71^{8} + 15\cdot 71^{9} + 67\cdot 71^{10} + 23\cdot 71^{11} + 25\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 28 + 50\cdot 71 + 27\cdot 71^{2} + 4\cdot 71^{3} + 9\cdot 71^{4} + 56\cdot 71^{5} + 45\cdot 71^{6} + 33\cdot 71^{7} + 47\cdot 71^{8} + 49\cdot 71^{9} + 58\cdot 71^{10} + 5\cdot 71^{11} + 26\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 43 + 20\cdot 71 + 43\cdot 71^{2} + 66\cdot 71^{3} + 61\cdot 71^{4} + 14\cdot 71^{5} + 25\cdot 71^{6} + 37\cdot 71^{7} + 23\cdot 71^{8} + 21\cdot 71^{9} + 12\cdot 71^{10} + 65\cdot 71^{11} + 44\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 44 + 51\cdot 71 + 2\cdot 71^{2} + 14\cdot 71^{3} + 28\cdot 71^{4} + 14\cdot 71^{5} + 56\cdot 71^{6} + 63\cdot 71^{7} + 17\cdot 71^{8} + 55\cdot 71^{9} + 3\cdot 71^{10} + 47\cdot 71^{11} + 45\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 47 + 39\cdot 71 + 13\cdot 71^{2} + 67\cdot 71^{3} + 49\cdot 71^{4} + 59\cdot 71^{5} + 13\cdot 71^{6} + 60\cdot 71^{7} + 13\cdot 71^{8} + 71^{9} + 7\cdot 71^{10} + 70\cdot 71^{11} + 14\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 58 + 19\cdot 71 + 60\cdot 71^{2} + 27\cdot 71^{3} + 20\cdot 71^{4} + 48\cdot 71^{5} + 33\cdot 71^{6} + 61\cdot 71^{7} + 34\cdot 71^{8} + 14\cdot 71^{9} + 46\cdot 71^{10} + 57\cdot 71^{11} + 57\cdot 71^{12} +O\left(71^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.