Properties

Label 2.2e8_3e2_11e2.8t5.5
Dimension 2
Group $Q_8$
Conductor $ 2^{8} \cdot 3^{2} \cdot 11^{2}$
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:$278784= 2^{8} \cdot 3^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 132 x^{6} + 4356 x^{4} - 30492 x^{2} + 27225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 13.
Roots:
$r_{ 1 }$ $=$ $ 9 + 43\cdot 53 + 21\cdot 53^{2} + 6\cdot 53^{3} + 21\cdot 53^{4} + 46\cdot 53^{5} + 40\cdot 53^{6} + 4\cdot 53^{7} + 52\cdot 53^{8} + 50\cdot 53^{9} + 44\cdot 53^{10} + 53^{11} + 16\cdot 53^{12} +O\left(53^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 14 + 44\cdot 53 + 31\cdot 53^{2} + 37\cdot 53^{3} + 30\cdot 53^{4} + 5\cdot 53^{5} + 14\cdot 53^{6} + 47\cdot 53^{7} + 42\cdot 53^{8} + 8\cdot 53^{9} + 33\cdot 53^{10} + 9\cdot 53^{11} + 29\cdot 53^{12} +O\left(53^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 17 + 7\cdot 53 + 34\cdot 53^{2} + 40\cdot 53^{3} + 15\cdot 53^{4} + 24\cdot 53^{6} + 4\cdot 53^{7} + 45\cdot 53^{8} + 33\cdot 53^{9} + 5\cdot 53^{10} + 9\cdot 53^{11} + 41\cdot 53^{12} +O\left(53^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 19 + 34\cdot 53 + 45\cdot 53^{2} + 31\cdot 53^{3} + 10\cdot 53^{4} + 6\cdot 53^{5} + 18\cdot 53^{6} + 34\cdot 53^{7} + 32\cdot 53^{8} + 11\cdot 53^{9} + 40\cdot 53^{10} + 6\cdot 53^{11} + 5\cdot 53^{12} +O\left(53^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 34 + 18\cdot 53 + 7\cdot 53^{2} + 21\cdot 53^{3} + 42\cdot 53^{4} + 46\cdot 53^{5} + 34\cdot 53^{6} + 18\cdot 53^{7} + 20\cdot 53^{8} + 41\cdot 53^{9} + 12\cdot 53^{10} + 46\cdot 53^{11} + 47\cdot 53^{12} +O\left(53^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 36 + 45\cdot 53 + 18\cdot 53^{2} + 12\cdot 53^{3} + 37\cdot 53^{4} + 52\cdot 53^{5} + 28\cdot 53^{6} + 48\cdot 53^{7} + 7\cdot 53^{8} + 19\cdot 53^{9} + 47\cdot 53^{10} + 43\cdot 53^{11} + 11\cdot 53^{12} +O\left(53^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 39 + 8\cdot 53 + 21\cdot 53^{2} + 15\cdot 53^{3} + 22\cdot 53^{4} + 47\cdot 53^{5} + 38\cdot 53^{6} + 5\cdot 53^{7} + 10\cdot 53^{8} + 44\cdot 53^{9} + 19\cdot 53^{10} + 43\cdot 53^{11} + 23\cdot 53^{12} +O\left(53^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 44 + 9\cdot 53 + 31\cdot 53^{2} + 46\cdot 53^{3} + 31\cdot 53^{4} + 6\cdot 53^{5} + 12\cdot 53^{6} + 48\cdot 53^{7} + 2\cdot 53^{9} + 8\cdot 53^{10} + 51\cdot 53^{11} + 36\cdot 53^{12} +O\left(53^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.