Properties

Label 2.2e8_3e2.8t8.2c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 3^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$2304= 2^{8} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} + 12 x^{4} - 12 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 2 + 61\cdot 109 + 42\cdot 109^{2} + 65\cdot 109^{3} + 26\cdot 109^{4} + 56\cdot 109^{5} + 69\cdot 109^{6} + 4\cdot 109^{7} + 35\cdot 109^{8} + 5\cdot 109^{9} +O\left(109^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 3 + 100\cdot 109 + 91\cdot 109^{2} + 69\cdot 109^{3} + 104\cdot 109^{4} + 76\cdot 109^{5} + 5\cdot 109^{6} + 69\cdot 109^{7} + 43\cdot 109^{8} + 15\cdot 109^{9} +O\left(109^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 10 + 19\cdot 109 + 21\cdot 109^{2} + 27\cdot 109^{3} + 3\cdot 109^{4} + 56\cdot 109^{5} + 90\cdot 109^{6} + 78\cdot 109^{7} + 62\cdot 109^{8} + 51\cdot 109^{9} +O\left(109^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 43 + 54\cdot 109 + 4\cdot 109^{2} + 33\cdot 109^{3} + 97\cdot 109^{4} + 74\cdot 109^{5} + 22\cdot 109^{6} + 41\cdot 109^{7} + 108\cdot 109^{8} + 100\cdot 109^{9} +O\left(109^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 66 + 54\cdot 109 + 104\cdot 109^{2} + 75\cdot 109^{3} + 11\cdot 109^{4} + 34\cdot 109^{5} + 86\cdot 109^{6} + 67\cdot 109^{7} + 8\cdot 109^{9} +O\left(109^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 99 + 89\cdot 109 + 87\cdot 109^{2} + 81\cdot 109^{3} + 105\cdot 109^{4} + 52\cdot 109^{5} + 18\cdot 109^{6} + 30\cdot 109^{7} + 46\cdot 109^{8} + 57\cdot 109^{9} +O\left(109^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 106 + 8\cdot 109 + 17\cdot 109^{2} + 39\cdot 109^{3} + 4\cdot 109^{4} + 32\cdot 109^{5} + 103\cdot 109^{6} + 39\cdot 109^{7} + 65\cdot 109^{8} + 93\cdot 109^{9} +O\left(109^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 107 + 47\cdot 109 + 66\cdot 109^{2} + 43\cdot 109^{3} + 82\cdot 109^{4} + 52\cdot 109^{5} + 39\cdot 109^{6} + 104\cdot 109^{7} + 73\cdot 109^{8} + 103\cdot 109^{9} +O\left(109^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,5,7,8,3,4,2)$
$(1,6,8,3)(2,4,7,5)$
$(1,5,8,4)(2,6,7,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(2,3)(4,5)(6,7)$$0$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$4$$4$$(1,3,8,6)(2,5,7,4)$$0$
$2$$8$$(1,6,5,7,8,3,4,2)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,3,5,2,8,6,4,7)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.