Properties

Label 2.2e8_3e2.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{8} \cdot 3^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2304= 2^{8} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 12 x^{6} + 72 x^{4} - 108 x^{2} + 81 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 4\cdot 17 + 2\cdot 17^{3} + 10\cdot 17^{4} + 16\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 + 6\cdot 17^{2} + 13\cdot 17^{3} + 11\cdot 17^{4} + 13\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 3 + 5\cdot 17 + 13\cdot 17^{2} + 8\cdot 17^{3} + 9\cdot 17^{4} + 5\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 7 + 8\cdot 17 + 4\cdot 17^{2} + 14\cdot 17^{3} + 3\cdot 17^{4} + 6\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 10 + 8\cdot 17 + 12\cdot 17^{2} + 2\cdot 17^{3} + 13\cdot 17^{4} + 10\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 14 + 11\cdot 17 + 3\cdot 17^{2} + 8\cdot 17^{3} + 7\cdot 17^{4} + 11\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 15 + 16\cdot 17 + 10\cdot 17^{2} + 3\cdot 17^{3} + 5\cdot 17^{4} + 3\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 16 + 12\cdot 17 + 16\cdot 17^{2} + 14\cdot 17^{3} + 6\cdot 17^{4} +O\left(17^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.