Properties

Label 2.2e8_3e2.4t3.8c1
Dimension 2
Group $D_4$
Conductor $ 2^{8} \cdot 3^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2304= 2^{8} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} + 18 x^{4} - 68 x^{2} + 49 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 7\cdot 29 + 12\cdot 29^{3} + 17\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 26\cdot 29 + 28\cdot 29^{2} + 26\cdot 29^{3} + 15\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 4\cdot 29 + 5\cdot 29^{2} + 9\cdot 29^{3} + 10\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 23\cdot 29 + 4\cdot 29^{2} + 24\cdot 29^{3} + 8\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 + 5\cdot 29 + 24\cdot 29^{2} + 4\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 + 24\cdot 29 + 23\cdot 29^{2} + 19\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 20 + 2\cdot 29 + 2\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 24 + 21\cdot 29 + 28\cdot 29^{2} + 16\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,5)(3,4,8,7)$
$(1,3)(2,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$4$$(1,2,6,5)(3,4,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.