Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 7\cdot 29 + 12\cdot 29^{3} + 17\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 26\cdot 29 + 28\cdot 29^{2} + 26\cdot 29^{3} + 15\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 + 4\cdot 29 + 5\cdot 29^{2} + 9\cdot 29^{3} + 10\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 14 + 23\cdot 29 + 4\cdot 29^{2} + 24\cdot 29^{3} + 8\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 15 + 5\cdot 29 + 24\cdot 29^{2} + 4\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 19 + 24\cdot 29 + 23\cdot 29^{2} + 19\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 20 + 2\cdot 29 + 2\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 24 + 21\cdot 29 + 28\cdot 29^{2} + 16\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,6,5)(3,4,8,7)$ |
| $(1,3)(2,7)(4,5)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,6)(2,5)(3,8)(4,7)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,7)(4,5)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,6,5)(3,4,8,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.