Properties

Label 2.2e8_3_5.4t3.18
Dimension 2
Group $D_4$
Conductor $ 2^{8} \cdot 3 \cdot 5 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3840= 2^{8} \cdot 3 \cdot 5 $
Artin number field: Splitting field of $f= x^{8} + 20 x^{6} + 48 x^{4} + 20 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 46\cdot 53 + 41\cdot 53^{2} + 20\cdot 53^{3} + 44\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 + 47\cdot 53 + 45\cdot 53^{2} + 17\cdot 53^{3} + 8\cdot 53^{4} + 35\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 46\cdot 53 + 10\cdot 53^{2} + 34\cdot 53^{3} + 14\cdot 53^{4} + 38\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 11\cdot 53 + 24\cdot 53^{2} + 7\cdot 53^{3} + 12\cdot 53^{4} + 52\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 27 + 41\cdot 53 + 28\cdot 53^{2} + 45\cdot 53^{3} + 40\cdot 53^{4} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 32 + 6\cdot 53 + 42\cdot 53^{2} + 18\cdot 53^{3} + 38\cdot 53^{4} + 14\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 48 + 5\cdot 53 + 7\cdot 53^{2} + 35\cdot 53^{3} + 44\cdot 53^{4} + 17\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 51 + 6\cdot 53 + 11\cdot 53^{2} + 32\cdot 53^{3} + 52\cdot 53^{4} + 8\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.