Properties

Label 2.2e8_31.8t8.2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 31 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$7936= 2^{8} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} + 8 x^{6} + 20 x^{4} + 16 x^{2} - 124 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 12.
Roots:
$r_{ 1 }$ $=$ $ 20 + 2\cdot 103 + 11\cdot 103^{2} + 33\cdot 103^{3} + 76\cdot 103^{4} + 100\cdot 103^{5} + 82\cdot 103^{6} + 4\cdot 103^{7} + 97\cdot 103^{8} + 98\cdot 103^{9} + 78\cdot 103^{10} + 77\cdot 103^{11} +O\left(103^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 27 + 46\cdot 103 + 99\cdot 103^{2} + 24\cdot 103^{3} + 75\cdot 103^{4} + 29\cdot 103^{5} + 23\cdot 103^{6} + 83\cdot 103^{7} + 32\cdot 103^{8} + 79\cdot 103^{9} + 40\cdot 103^{10} + 22\cdot 103^{11} +O\left(103^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 30 + 11\cdot 103 + 99\cdot 103^{2} + 5\cdot 103^{3} + 7\cdot 103^{4} + 34\cdot 103^{5} + 34\cdot 103^{6} + 37\cdot 103^{7} + 41\cdot 103^{8} + 101\cdot 103^{9} + 7\cdot 103^{10} + 92\cdot 103^{11} +O\left(103^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 34 + 93\cdot 103 + 22\cdot 103^{2} + 101\cdot 103^{3} + 52\cdot 103^{4} + 15\cdot 103^{5} + 82\cdot 103^{6} + 5\cdot 103^{7} + 18\cdot 103^{8} + 103^{9} + 2\cdot 103^{10} + 36\cdot 103^{11} +O\left(103^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 69 + 9\cdot 103 + 80\cdot 103^{2} + 103^{3} + 50\cdot 103^{4} + 87\cdot 103^{5} + 20\cdot 103^{6} + 97\cdot 103^{7} + 84\cdot 103^{8} + 101\cdot 103^{9} + 100\cdot 103^{10} + 66\cdot 103^{11} +O\left(103^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 73 + 91\cdot 103 + 3\cdot 103^{2} + 97\cdot 103^{3} + 95\cdot 103^{4} + 68\cdot 103^{5} + 68\cdot 103^{6} + 65\cdot 103^{7} + 61\cdot 103^{8} + 103^{9} + 95\cdot 103^{10} + 10\cdot 103^{11} +O\left(103^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 76 + 56\cdot 103 + 3\cdot 103^{2} + 78\cdot 103^{3} + 27\cdot 103^{4} + 73\cdot 103^{5} + 79\cdot 103^{6} + 19\cdot 103^{7} + 70\cdot 103^{8} + 23\cdot 103^{9} + 62\cdot 103^{10} + 80\cdot 103^{11} +O\left(103^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 83 + 100\cdot 103 + 91\cdot 103^{2} + 69\cdot 103^{3} + 26\cdot 103^{4} + 2\cdot 103^{5} + 20\cdot 103^{6} + 98\cdot 103^{7} + 5\cdot 103^{8} + 4\cdot 103^{9} + 24\cdot 103^{10} + 25\cdot 103^{11} +O\left(103^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,2,4,8,6,7,5)$
$(1,5,8,4)(2,6,7,3)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$4$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$ $0$
$2$ $8$ $(1,3,2,4,8,6,7,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,6,2,5,8,3,7,4)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.