Properties

Label 2.2e8_31.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 31 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$7936= 2^{8} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} + 20 x^{4} - 16 x^{2} - 124 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 12.
Roots:
$r_{ 1 }$ $=$ $ 16 + 27\cdot 71 + 17\cdot 71^{2} + 17\cdot 71^{3} + 42\cdot 71^{4} + 26\cdot 71^{5} + 6\cdot 71^{6} + 6\cdot 71^{7} + 66\cdot 71^{8} + 52\cdot 71^{9} + 66\cdot 71^{10} + 11\cdot 71^{11} +O\left(71^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 21 + 45\cdot 71 + 63\cdot 71^{2} + 29\cdot 71^{3} + 69\cdot 71^{4} + 70\cdot 71^{5} + 2\cdot 71^{6} + 40\cdot 71^{7} + 16\cdot 71^{8} + 53\cdot 71^{9} + 42\cdot 71^{11} +O\left(71^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 23 + 35\cdot 71 + 36\cdot 71^{2} + 31\cdot 71^{3} + 62\cdot 71^{4} + 43\cdot 71^{5} + 31\cdot 71^{6} + 42\cdot 71^{7} + 25\cdot 71^{8} + 63\cdot 71^{9} + 15\cdot 71^{10} + 18\cdot 71^{11} +O\left(71^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 29 + 43\cdot 71 + 53\cdot 71^{2} + 28\cdot 71^{3} + 25\cdot 71^{4} + 20\cdot 71^{5} + 69\cdot 71^{6} + 49\cdot 71^{7} + 40\cdot 71^{8} + 45\cdot 71^{9} + 12\cdot 71^{10} + 18\cdot 71^{11} +O\left(71^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 42 + 27\cdot 71 + 17\cdot 71^{2} + 42\cdot 71^{3} + 45\cdot 71^{4} + 50\cdot 71^{5} + 71^{6} + 21\cdot 71^{7} + 30\cdot 71^{8} + 25\cdot 71^{9} + 58\cdot 71^{10} + 52\cdot 71^{11} +O\left(71^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 48 + 35\cdot 71 + 34\cdot 71^{2} + 39\cdot 71^{3} + 8\cdot 71^{4} + 27\cdot 71^{5} + 39\cdot 71^{6} + 28\cdot 71^{7} + 45\cdot 71^{8} + 7\cdot 71^{9} + 55\cdot 71^{10} + 52\cdot 71^{11} +O\left(71^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 50 + 25\cdot 71 + 7\cdot 71^{2} + 41\cdot 71^{3} + 71^{4} + 68\cdot 71^{6} + 30\cdot 71^{7} + 54\cdot 71^{8} + 17\cdot 71^{9} + 70\cdot 71^{10} + 28\cdot 71^{11} +O\left(71^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 55 + 43\cdot 71 + 53\cdot 71^{2} + 53\cdot 71^{3} + 28\cdot 71^{4} + 44\cdot 71^{5} + 64\cdot 71^{6} + 64\cdot 71^{7} + 4\cdot 71^{8} + 18\cdot 71^{9} + 4\cdot 71^{10} + 59\cdot 71^{11} +O\left(71^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,8)(2,5)(4,7)$
$(1,5,3,7,8,4,6,2)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,8)(2,5)(4,7)$ $0$ $0$
$2$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$ $0$
$4$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$2$ $8$ $(1,5,3,7,8,4,6,2)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,4,3,2,8,5,6,7)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.