Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 4\cdot 67 + 27\cdot 67^{2} + 18\cdot 67^{3} + 3\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 64\cdot 67 + 67^{2} + 47\cdot 67^{3} + 50\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 + 31\cdot 67 + 26\cdot 67^{2} + 12\cdot 67^{3} + 24\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 13 + 19\cdot 67 + 3\cdot 67^{2} + 25\cdot 67^{3} + 4\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 54 + 47\cdot 67 + 63\cdot 67^{2} + 41\cdot 67^{3} + 62\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 55 + 35\cdot 67 + 40\cdot 67^{2} + 54\cdot 67^{3} + 42\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 58 + 2\cdot 67 + 65\cdot 67^{2} + 19\cdot 67^{3} + 16\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 65 + 62\cdot 67 + 39\cdot 67^{2} + 48\cdot 67^{3} + 63\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,3,8,6)(2,5,7,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,3)(4,8)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,3,8,6)(2,5,7,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.