Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 4.0.6144.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{-2}, \sqrt{-3})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 7 + 60\cdot 67 + 41\cdot 67^{2} + 28\cdot 67^{3} + 47\cdot 67^{4} +O(67^{5})\) |
$r_{ 2 }$ | $=$ | \( 25 + 50\cdot 67 + 29\cdot 67^{2} + 37\cdot 67^{3} + 28\cdot 67^{4} +O(67^{5})\) |
$r_{ 3 }$ | $=$ | \( 42 + 16\cdot 67 + 37\cdot 67^{2} + 29\cdot 67^{3} + 38\cdot 67^{4} +O(67^{5})\) |
$r_{ 4 }$ | $=$ | \( 60 + 6\cdot 67 + 25\cdot 67^{2} + 38\cdot 67^{3} + 19\cdot 67^{4} +O(67^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,4)$ | $0$ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |