Properties

Label 2.2e8_23.8t8.2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 23 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$5888= 2^{8} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} - 28 x^{4} + 44 x^{2} - 23 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 17.
Roots:
$r_{ 1 }$ $=$ $ 2 + 22\cdot 31 + 8\cdot 31^{2} + 6\cdot 31^{3} + 12\cdot 31^{4} + 18\cdot 31^{5} + 11\cdot 31^{6} + 14\cdot 31^{7} + 8\cdot 31^{9} + 18\cdot 31^{10} + 10\cdot 31^{12} + 6\cdot 31^{13} + 5\cdot 31^{14} + 22\cdot 31^{15} + 19\cdot 31^{16} +O\left(31^{ 17 }\right)$
$r_{ 2 }$ $=$ $ 7 + 26\cdot 31 + 3\cdot 31^{2} + 4\cdot 31^{3} + 21\cdot 31^{4} + 31^{5} + 25\cdot 31^{6} + 12\cdot 31^{7} + 31^{8} + 13\cdot 31^{9} + 13\cdot 31^{10} + 24\cdot 31^{11} + 22\cdot 31^{12} + 24\cdot 31^{13} + 16\cdot 31^{14} + 17\cdot 31^{15} + 18\cdot 31^{16} +O\left(31^{ 17 }\right)$
$r_{ 3 }$ $=$ $ 11 + 29\cdot 31 + 7\cdot 31^{2} + 15\cdot 31^{3} + 22\cdot 31^{4} + 30\cdot 31^{5} + 23\cdot 31^{6} + 20\cdot 31^{7} + 30\cdot 31^{8} + 30\cdot 31^{9} + 19\cdot 31^{10} + 23\cdot 31^{11} + 7\cdot 31^{13} + 17\cdot 31^{14} + 20\cdot 31^{15} + 28\cdot 31^{16} +O\left(31^{ 17 }\right)$
$r_{ 4 }$ $=$ $ 15 + 18\cdot 31 + 2\cdot 31^{2} + 25\cdot 31^{3} + 11\cdot 31^{4} + 27\cdot 31^{5} + 2\cdot 31^{6} + 14\cdot 31^{7} + 27\cdot 31^{8} + 8\cdot 31^{9} + 2\cdot 31^{10} + 5\cdot 31^{11} + 4\cdot 31^{12} + 26\cdot 31^{13} + 2\cdot 31^{14} + 17\cdot 31^{15} + 27\cdot 31^{16} +O\left(31^{ 17 }\right)$
$r_{ 5 }$ $=$ $ 16 + 12\cdot 31 + 28\cdot 31^{2} + 5\cdot 31^{3} + 19\cdot 31^{4} + 3\cdot 31^{5} + 28\cdot 31^{6} + 16\cdot 31^{7} + 3\cdot 31^{8} + 22\cdot 31^{9} + 28\cdot 31^{10} + 25\cdot 31^{11} + 26\cdot 31^{12} + 4\cdot 31^{13} + 28\cdot 31^{14} + 13\cdot 31^{15} + 3\cdot 31^{16} +O\left(31^{ 17 }\right)$
$r_{ 6 }$ $=$ $ 20 + 31 + 23\cdot 31^{2} + 15\cdot 31^{3} + 8\cdot 31^{4} + 7\cdot 31^{6} + 10\cdot 31^{7} + 11\cdot 31^{10} + 7\cdot 31^{11} + 30\cdot 31^{12} + 23\cdot 31^{13} + 13\cdot 31^{14} + 10\cdot 31^{15} + 2\cdot 31^{16} +O\left(31^{ 17 }\right)$
$r_{ 7 }$ $=$ $ 24 + 4\cdot 31 + 27\cdot 31^{2} + 26\cdot 31^{3} + 9\cdot 31^{4} + 29\cdot 31^{5} + 5\cdot 31^{6} + 18\cdot 31^{7} + 29\cdot 31^{8} + 17\cdot 31^{9} + 17\cdot 31^{10} + 6\cdot 31^{11} + 8\cdot 31^{12} + 6\cdot 31^{13} + 14\cdot 31^{14} + 13\cdot 31^{15} + 12\cdot 31^{16} +O\left(31^{ 17 }\right)$
$r_{ 8 }$ $=$ $ 29 + 8\cdot 31 + 22\cdot 31^{2} + 24\cdot 31^{3} + 18\cdot 31^{4} + 12\cdot 31^{5} + 19\cdot 31^{6} + 16\cdot 31^{7} + 30\cdot 31^{8} + 22\cdot 31^{9} + 12\cdot 31^{10} + 30\cdot 31^{11} + 20\cdot 31^{12} + 24\cdot 31^{13} + 25\cdot 31^{14} + 8\cdot 31^{15} + 11\cdot 31^{16} +O\left(31^{ 17 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$
$(1,5,2,6,8,4,7,3)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,2)(4,5)(7,8)$ $0$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$ $0$
$4$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$ $0$
$2$ $8$ $(1,5,2,6,8,4,7,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,4,2,3,8,5,7,6)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.