Properties

Label 2.2e8_23.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{8} \cdot 23 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$5888= 2^{8} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} - 28 x^{4} - 44 x^{2} - 23 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 233 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 42 + 232\cdot 233 + 59\cdot 233^{2} + 72\cdot 233^{3} + 35\cdot 233^{4} + 103\cdot 233^{5} + 98\cdot 233^{7} + 64\cdot 233^{8} + 90\cdot 233^{9} + 55\cdot 233^{10} +O\left(233^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 53 + 164\cdot 233 + 11\cdot 233^{2} + 186\cdot 233^{3} + 127\cdot 233^{4} + 206\cdot 233^{5} + 127\cdot 233^{6} + 114\cdot 233^{7} + 78\cdot 233^{8} + 48\cdot 233^{9} + 29\cdot 233^{10} +O\left(233^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 82 + 218\cdot 233 + 93\cdot 233^{2} + 75\cdot 233^{3} + 42\cdot 233^{4} + 55\cdot 233^{5} + 27\cdot 233^{6} + 42\cdot 233^{7} + 198\cdot 233^{8} + 232\cdot 233^{9} + 119\cdot 233^{10} +O\left(233^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 103 + 113\cdot 233 + 32\cdot 233^{2} + 134\cdot 233^{3} + 53\cdot 233^{4} + 65\cdot 233^{5} + 16\cdot 233^{6} + 182\cdot 233^{7} + 109\cdot 233^{8} + 130\cdot 233^{9} + 166\cdot 233^{10} +O\left(233^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 130 + 119\cdot 233 + 200\cdot 233^{2} + 98\cdot 233^{3} + 179\cdot 233^{4} + 167\cdot 233^{5} + 216\cdot 233^{6} + 50\cdot 233^{7} + 123\cdot 233^{8} + 102\cdot 233^{9} + 66\cdot 233^{10} +O\left(233^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 151 + 14\cdot 233 + 139\cdot 233^{2} + 157\cdot 233^{3} + 190\cdot 233^{4} + 177\cdot 233^{5} + 205\cdot 233^{6} + 190\cdot 233^{7} + 34\cdot 233^{8} + 113\cdot 233^{10} +O\left(233^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 180 + 68\cdot 233 + 221\cdot 233^{2} + 46\cdot 233^{3} + 105\cdot 233^{4} + 26\cdot 233^{5} + 105\cdot 233^{6} + 118\cdot 233^{7} + 154\cdot 233^{8} + 184\cdot 233^{9} + 203\cdot 233^{10} +O\left(233^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 191 + 173\cdot 233^{2} + 160\cdot 233^{3} + 197\cdot 233^{4} + 129\cdot 233^{5} + 232\cdot 233^{6} + 134\cdot 233^{7} + 168\cdot 233^{8} + 142\cdot 233^{9} + 177\cdot 233^{10} +O\left(233^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(5,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,4)(2,7)(5,8)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$4$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$8$$(1,3,5,7,8,6,4,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,6,5,2,8,3,4,7)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.