Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 13.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 30\cdot 31 + 2\cdot 31^{2} + 24\cdot 31^{3} + 3\cdot 31^{4} + 13\cdot 31^{5} + 2\cdot 31^{6} + 10\cdot 31^{7} + 7\cdot 31^{8} + 18\cdot 31^{9} + 18\cdot 31^{10} + 26\cdot 31^{11} + 11\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 + 2\cdot 31 + 20\cdot 31^{2} + 15\cdot 31^{3} + 24\cdot 31^{4} + 17\cdot 31^{5} + 26\cdot 31^{6} + 19\cdot 31^{7} + 26\cdot 31^{8} + 9\cdot 31^{9} + 31^{10} + 8\cdot 31^{11} + 29\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 + 24\cdot 31 + 4\cdot 31^{2} + 18\cdot 31^{3} + 26\cdot 31^{4} + 22\cdot 31^{5} + 13\cdot 31^{6} + 9\cdot 31^{7} + 6\cdot 31^{8} + 4\cdot 31^{9} + 21\cdot 31^{10} + 24\cdot 31^{11} + 3\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 + 18\cdot 31 + 2\cdot 31^{2} + 29\cdot 31^{3} + 18\cdot 31^{4} + 13\cdot 31^{5} + 21\cdot 31^{6} + 16\cdot 31^{7} + 29\cdot 31^{8} + 7\cdot 31^{9} + 25\cdot 31^{10} + 18\cdot 31^{11} + 13\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 22 + 12\cdot 31 + 28\cdot 31^{2} + 31^{3} + 12\cdot 31^{4} + 17\cdot 31^{5} + 9\cdot 31^{6} + 14\cdot 31^{7} + 31^{8} + 23\cdot 31^{9} + 5\cdot 31^{10} + 12\cdot 31^{11} + 17\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 27 + 6\cdot 31 + 26\cdot 31^{2} + 12\cdot 31^{3} + 4\cdot 31^{4} + 8\cdot 31^{5} + 17\cdot 31^{6} + 21\cdot 31^{7} + 24\cdot 31^{8} + 26\cdot 31^{9} + 9\cdot 31^{10} + 6\cdot 31^{11} + 27\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 28 + 28\cdot 31 + 10\cdot 31^{2} + 15\cdot 31^{3} + 6\cdot 31^{4} + 13\cdot 31^{5} + 4\cdot 31^{6} + 11\cdot 31^{7} + 4\cdot 31^{8} + 21\cdot 31^{9} + 29\cdot 31^{10} + 22\cdot 31^{11} + 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 30 + 28\cdot 31^{2} + 6\cdot 31^{3} + 27\cdot 31^{4} + 17\cdot 31^{5} + 28\cdot 31^{6} + 20\cdot 31^{7} + 23\cdot 31^{8} + 12\cdot 31^{9} + 12\cdot 31^{10} + 4\cdot 31^{11} + 19\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,6,8,3)(2,4,7,5)$ |
| $(1,5,8,4)(2,6,7,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
| $2$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $0$ |
| $2$ | $4$ | $(1,5,8,4)(2,6,7,3)$ | $0$ |
| $2$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.