Properties

Label 2.2e8_17.4t3.5
Dimension 2
Group $D_{4}$
Conductor $ 2^{8} \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$4352= 2^{8} \cdot 17 $
Artin number field: Splitting field of $f= x^{4} - 12 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 16\cdot 127 + 20\cdot 127^{2} + 110\cdot 127^{3} + 119\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 43 + 13\cdot 127 + 93\cdot 127^{2} + 41\cdot 127^{3} + 56\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 84 + 113\cdot 127 + 33\cdot 127^{2} + 85\cdot 127^{3} + 70\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 103 + 110\cdot 127 + 106\cdot 127^{2} + 16\cdot 127^{3} + 7\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(2,3)$ $0$
$2$ $4$ $(1,2,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.