Properties

Label 2.2e8_17.4t3.13
Dimension 2
Group $D_4$
Conductor $ 2^{8} \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4352= 2^{8} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 20 x^{6} + 74 x^{4} - 80 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 80\cdot 127 + 61\cdot 127^{2} + 118\cdot 127^{3} + 27\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 92\cdot 127 + 58\cdot 127^{2} + 65\cdot 127^{3} + 12\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 + 108\cdot 127 + 78\cdot 127^{2} + 48\cdot 127^{3} + 5\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 + 60\cdot 127 + 31\cdot 127^{2} + 50\cdot 127^{3} + 28\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 91 + 66\cdot 127 + 95\cdot 127^{2} + 76\cdot 127^{3} + 98\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 95 + 18\cdot 127 + 48\cdot 127^{2} + 78\cdot 127^{3} + 121\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 119 + 34\cdot 127 + 68\cdot 127^{2} + 61\cdot 127^{3} + 114\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 120 + 46\cdot 127 + 65\cdot 127^{2} + 8\cdot 127^{3} + 99\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.