Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 72\cdot 73 + 34\cdot 73^{2} + 34\cdot 73^{3} + 49\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 + 66\cdot 73 + 37\cdot 73^{2} + 34\cdot 73^{3} + 18\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 + 12\cdot 73 + 16\cdot 73^{2} + 36\cdot 73^{3} + 2\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 29 + 20\cdot 73 + 49\cdot 73^{2} + 5\cdot 73^{3} + 7\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 44 + 52\cdot 73 + 23\cdot 73^{2} + 67\cdot 73^{3} + 65\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 50 + 60\cdot 73 + 56\cdot 73^{2} + 36\cdot 73^{3} + 70\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 54 + 6\cdot 73 + 35\cdot 73^{2} + 38\cdot 73^{3} + 54\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 68 + 38\cdot 73^{2} + 38\cdot 73^{3} + 23\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,8,7)(3,5,6,4)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,6)(3,7)(5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.