Properties

Label 2.2e7_7e2.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{7} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6272= 2^{7} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 4 x^{6} + 12 x^{5} + 88 x^{4} - 84 x^{3} - 420 x^{2} + 124 x + 961 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 44 + 45\cdot 73 + 72\cdot 73^{2} + 27\cdot 73^{3} + 32\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 + 10\cdot 73 + 61\cdot 73^{2} + 42\cdot 73^{3} + 43\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 60\cdot 73 + 39\cdot 73^{2} + 39\cdot 73^{3} + 33\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 56 + 51\cdot 73 + 40\cdot 73^{2} + 13\cdot 73^{3} + 15\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 16\cdot 73 + 29\cdot 73^{2} + 28\cdot 73^{3} + 26\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 59 + 16\cdot 73 + 36\cdot 73^{2} + 64\cdot 73^{3} + 70\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 61 + 66\cdot 73 + 7\cdot 73^{2} + 25\cdot 73^{3} + 16\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 71 + 22\cdot 73 + 4\cdot 73^{2} + 50\cdot 73^{3} + 53\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,6)(4,7,5,8)$
$(1,2)(3,6)(4,5)(7,8)$
$(1,4)(2,5)(3,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $-2$
$2$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $0$
$2$ $2$ $(1,8)(2,7)(3,5)(4,6)$ $0$
$2$ $4$ $(1,3,2,6)(4,7,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.