Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 40 + 28\cdot 191 + 2\cdot 191^{2} + 182\cdot 191^{3} + 57\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 58 + 155\cdot 191 + 16\cdot 191^{2} + 65\cdot 191^{3} + 76\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 60 + 38\cdot 191 + 128\cdot 191^{2} + 36\cdot 191^{3} + 117\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 72 + 98\cdot 191 + 121\cdot 191^{2} + 20\cdot 191^{3} + 150\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 119 + 92\cdot 191 + 69\cdot 191^{2} + 170\cdot 191^{3} + 40\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 131 + 152\cdot 191 + 62\cdot 191^{2} + 154\cdot 191^{3} + 73\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 133 + 35\cdot 191 + 174\cdot 191^{2} + 125\cdot 191^{3} + 114\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 151 + 162\cdot 191 + 188\cdot 191^{2} + 8\cdot 191^{3} + 133\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,2)(4,5)(7,8)$ |
| $(1,2,8,7)(3,5,6,4)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
| $4$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,2)(4,5)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $0$ |
| $2$ | $8$ | $(1,3,2,5,8,6,7,4)$ | $\zeta_{8}^{3} - \zeta_{8}$ |
| $2$ | $8$ | $(1,5,7,3,8,4,2,6)$ | $-\zeta_{8}^{3} + \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.