Properties

Label 2.896.8t6.a.b
Dimension $2$
Group $D_{8}$
Conductor $896$
Root number $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $D_{8}$
Conductor: \(896\)\(\medspace = 2^{7} \cdot 7 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 8.0.1258815488.2
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Determinant: 1.56.2t1.b.a
Projective image: $D_4$
Projective stem field: 4.0.1568.1

Defining polynomial

$f(x)$$=$\(x^{8} - 4 x^{6} + 5 x^{4} - 2 x^{2} + 2\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 7 + 38\cdot 71 + 45\cdot 71^{2} + 52\cdot 71^{3} + 50\cdot 71^{4} + 30\cdot 71^{5} +O(71^{6})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 14 + 27\cdot 71 + 58\cdot 71^{2} + 42\cdot 71^{3} + 46\cdot 71^{4} + 34\cdot 71^{5} +O(71^{6})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 27 + 16\cdot 71 + 17\cdot 71^{2} + 67\cdot 71^{3} + 31\cdot 71^{4} + 68\cdot 71^{5} +O(71^{6})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 33 + 67\cdot 71 + 6\cdot 71^{2} + 2\cdot 71^{3} + 5\cdot 71^{4} + 51\cdot 71^{5} +O(71^{6})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 38 + 3\cdot 71 + 64\cdot 71^{2} + 68\cdot 71^{3} + 65\cdot 71^{4} + 19\cdot 71^{5} +O(71^{6})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 44 + 54\cdot 71 + 53\cdot 71^{2} + 3\cdot 71^{3} + 39\cdot 71^{4} + 2\cdot 71^{5} +O(71^{6})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 57 + 43\cdot 71 + 12\cdot 71^{2} + 28\cdot 71^{3} + 24\cdot 71^{4} + 36\cdot 71^{5} +O(71^{6})\)  Toggle raw display
$r_{ 8 }$ $=$ \( 64 + 32\cdot 71 + 25\cdot 71^{2} + 18\cdot 71^{3} + 20\cdot 71^{4} + 40\cdot 71^{5} +O(71^{6})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,7)(4,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$4$$2$$(1,5)(2,7)(4,8)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$8$$(1,7,4,3,8,2,5,6)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,3,5,7,8,6,4,2)$$-\zeta_{8}^{3} + \zeta_{8}$

The blue line marks the conjugacy class containing complex conjugation.