Properties

Label 2.2e7_7.8t6.2c2
Dimension 2
Group $D_{8}$
Conductor $ 2^{7} \cdot 7 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$896= 2^{7} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 22 x^{4} + 48 x^{3} - 44 x^{2} + 16 x - 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.2e3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 21\cdot 71 + 39\cdot 71^{2} + 50\cdot 71^{3} + 36\cdot 71^{4} + 70\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 47\cdot 71 + 53\cdot 71^{2} + 70\cdot 71^{3} + 9\cdot 71^{4} + 70\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 62\cdot 71 + 60\cdot 71^{2} + 2\cdot 71^{3} + 48\cdot 71^{4} + 46\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 29 + 63\cdot 71 + 3\cdot 71^{2} + 19\cdot 71^{3} + 48\cdot 71^{4} + 6\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 34 + 46\cdot 71^{2} + 68\cdot 71^{3} + 64\cdot 71^{4} + 63\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 36 + 10\cdot 71 + 45\cdot 71^{2} + 71^{3} + 47\cdot 71^{4} + 65\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 43 + 12\cdot 71 + 23\cdot 71^{2} + 24\cdot 71^{3} + 38\cdot 71^{4} + 57\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 46 + 66\cdot 71 + 11\cdot 71^{2} + 46\cdot 71^{3} + 61\cdot 71^{4} + 44\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,2,3,4,5,6,8)$
$(1,6,4,2)(3,7,8,5)$
$(2,6)(3,5)(7,8)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,8)(5,7)$$-2$
$4$$2$$(2,6)(3,5)(7,8)$$0$
$4$$2$$(1,7)(2,8)(3,6)(4,5)$$0$
$2$$4$$(1,2,4,6)(3,5,8,7)$$0$
$2$$8$$(1,7,2,3,4,5,6,8)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,3,6,7,4,8,2,5)$$-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.