Properties

Label 2.2e7_7.8t17.4
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{7} \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$896= 2^{7} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} + 6 x^{4} + 12 x^{2} + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 7 + 112\cdot 127 + 49\cdot 127^{2} + 100\cdot 127^{3} + 113\cdot 127^{4} + 40\cdot 127^{5} + 75\cdot 127^{6} + 47\cdot 127^{7} +O\left(127^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 11 + 72\cdot 127 + 81\cdot 127^{2} + 105\cdot 127^{3} + 107\cdot 127^{4} + 121\cdot 127^{5} + 10\cdot 127^{6} + 49\cdot 127^{7} +O\left(127^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 47 + 14\cdot 127 + 15\cdot 127^{2} + 115\cdot 127^{3} + 19\cdot 127^{4} + 67\cdot 127^{5} + 28\cdot 127^{6} + 79\cdot 127^{7} +O\left(127^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 63 + 73\cdot 127 + 61\cdot 127^{2} + 25\cdot 127^{3} + 40\cdot 127^{4} + 37\cdot 127^{5} + 112\cdot 127^{6} + 105\cdot 127^{7} +O\left(127^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 64 + 53\cdot 127 + 65\cdot 127^{2} + 101\cdot 127^{3} + 86\cdot 127^{4} + 89\cdot 127^{5} + 14\cdot 127^{6} + 21\cdot 127^{7} +O\left(127^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 80 + 112\cdot 127 + 111\cdot 127^{2} + 11\cdot 127^{3} + 107\cdot 127^{4} + 59\cdot 127^{5} + 98\cdot 127^{6} + 47\cdot 127^{7} +O\left(127^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 116 + 54\cdot 127 + 45\cdot 127^{2} + 21\cdot 127^{3} + 19\cdot 127^{4} + 5\cdot 127^{5} + 116\cdot 127^{6} + 77\cdot 127^{7} +O\left(127^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 120 + 14\cdot 127 + 77\cdot 127^{2} + 26\cdot 127^{3} + 13\cdot 127^{4} + 86\cdot 127^{5} + 51\cdot 127^{6} + 79\cdot 127^{7} +O\left(127^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(2,3,7,6)$
$(1,7,8,2)(3,4,6,5)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(2,7)(3,6)$ $0$ $0$
$4$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$ $0$
$1$ $4$ $(1,5,8,4)(2,6,7,3)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,4,8,5)(2,3,7,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$ $0$
$2$ $4$ $(2,3,7,6)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(2,6,7,3)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,8)(2,6,7,3)(4,5)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,8)(2,3,7,6)(4,5)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$4$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$ $0$
$4$ $8$ $(1,6,5,7,8,3,4,2)$ $0$ $0$
$4$ $8$ $(1,7,4,6,8,2,5,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.