Properties

Label 2.2e7_7.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{7} \cdot 7 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$896= 2^{7} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 8 x^{6} + 24 x^{5} + 30 x^{4} - 16 x^{3} - 20 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 54\cdot 103 + 20\cdot 103^{2} + 23\cdot 103^{3} + 43\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 52\cdot 103 + 13\cdot 103^{2} + 16\cdot 103^{3} + 9\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 55\cdot 103 + 101\cdot 103^{2} + 51\cdot 103^{3} + 26\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 + 74\cdot 103 + 68\cdot 103^{2} + 99\cdot 103^{3} + 52\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 24\cdot 103 + 22\cdot 103^{2} + 38\cdot 103^{3} + 14\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 55 + 25\cdot 103 + 67\cdot 103^{3} + 100\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 74 + 81\cdot 103 + 11\cdot 103^{2} + 103^{3} + 38\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 75 + 44\cdot 103 + 70\cdot 103^{2} + 11\cdot 103^{3} + 24\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,7)(5,6)$
$(1,2,4,6)(3,5,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,7)(5,8)$$-2$
$2$$2$$(1,3)(2,8)(4,7)(5,6)$$0$
$2$$2$$(1,8)(2,7)(3,6)(4,5)$$0$
$2$$4$$(1,2,4,6)(3,5,7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.