Properties

Label 2.2e7_67.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{7} \cdot 67 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8576= 2^{7} \cdot 67 $
Artin number field: Splitting field of $f= x^{8} + 36 x^{6} + 240 x^{4} + 632 x^{2} + 1764 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 41 + 106\cdot 193 + 77\cdot 193^{2} + 107\cdot 193^{3} + 26\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 + 42\cdot 193 + 152\cdot 193^{2} + 53\cdot 193^{3} + 178\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 65 + 48\cdot 193 + 100\cdot 193^{2} + 191\cdot 193^{3} + 115\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 84 + 177\cdot 193 + 174\cdot 193^{2} + 137\cdot 193^{3} + 74\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 109 + 15\cdot 193 + 18\cdot 193^{2} + 55\cdot 193^{3} + 118\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 128 + 144\cdot 193 + 92\cdot 193^{2} + 193^{3} + 77\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 133 + 150\cdot 193 + 40\cdot 193^{2} + 139\cdot 193^{3} + 14\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 152 + 86\cdot 193 + 115\cdot 193^{2} + 85\cdot 193^{3} + 166\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $4$ $(1,7,4,6)(2,5,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.