Properties

Label 2.2e7_5e2.8t17.2c2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{7} \cdot 5^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$3200= 2^{7} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 6 x^{6} + 12 x^{4} - 10 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.2e3_5.4t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 2 + 20\cdot 29 + 25\cdot 29^{2} + 17\cdot 29^{3} + 9\cdot 29^{4} + 9\cdot 29^{5} + 11\cdot 29^{6} + 12\cdot 29^{7} + 5\cdot 29^{8} + 9\cdot 29^{9} +O\left(29^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 3 + 23\cdot 29 + 27\cdot 29^{2} + 20\cdot 29^{3} + 28\cdot 29^{4} + 5\cdot 29^{5} + 18\cdot 29^{6} + 18\cdot 29^{7} + 11\cdot 29^{8} + 2\cdot 29^{9} + 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 4 + 26\cdot 29 + 17\cdot 29^{2} + 22\cdot 29^{3} + 15\cdot 29^{4} + 19\cdot 29^{5} + 4\cdot 29^{6} + 25\cdot 29^{7} + 5\cdot 29^{8} +O\left(29^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 8 + 4\cdot 29 + 25\cdot 29^{2} + 7\cdot 29^{3} + 28\cdot 29^{4} + 10\cdot 29^{5} + 17\cdot 29^{6} + 10\cdot 29^{7} + 5\cdot 29^{8} + 2\cdot 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 21 + 24\cdot 29 + 3\cdot 29^{2} + 21\cdot 29^{3} + 18\cdot 29^{5} + 11\cdot 29^{6} + 18\cdot 29^{7} + 23\cdot 29^{8} + 28\cdot 29^{9} + 26\cdot 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 25 + 2\cdot 29 + 11\cdot 29^{2} + 6\cdot 29^{3} + 13\cdot 29^{4} + 9\cdot 29^{5} + 24\cdot 29^{6} + 3\cdot 29^{7} + 23\cdot 29^{8} + 28\cdot 29^{9} + 28\cdot 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 26 + 5\cdot 29 + 29^{2} + 8\cdot 29^{3} + 23\cdot 29^{5} + 10\cdot 29^{6} + 10\cdot 29^{7} + 17\cdot 29^{8} + 26\cdot 29^{9} + 27\cdot 29^{10} +O\left(29^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 27 + 8\cdot 29 + 3\cdot 29^{2} + 11\cdot 29^{3} + 19\cdot 29^{4} + 19\cdot 29^{5} + 17\cdot 29^{6} + 16\cdot 29^{7} + 23\cdot 29^{8} + 19\cdot 29^{9} + 28\cdot 29^{10} +O\left(29^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,3,8,6)(2,4,7,5)$
$(2,4,7,5)$
$(2,7)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$1$$4$$(1,3,8,6)(2,5,7,4)$$2 \zeta_{4}$
$1$$4$$(1,6,8,3)(2,4,7,5)$$-2 \zeta_{4}$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$4$$(2,4,7,5)$$\zeta_{4} - 1$
$2$$4$$(2,5,7,4)$$-\zeta_{4} - 1$
$2$$4$$(1,3,8,6)(2,7)(4,5)$$-\zeta_{4} + 1$
$2$$4$$(1,6,8,3)(2,7)(4,5)$$\zeta_{4} + 1$
$4$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$8$$(1,7,3,4,8,2,6,5)$$0$
$4$$8$$(1,4,6,7,8,5,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.