Properties

Label 2.2e7_5_7.4t3.10
Dimension 2
Group $D_4$
Conductor $ 2^{7} \cdot 5 \cdot 7 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4480= 2^{7} \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} - 8 x^{5} + 86 x^{4} - 280 x^{3} - 124 x^{2} + 840 x + 630 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 10\cdot 67 + 48\cdot 67^{2} + 37\cdot 67^{3} + 14\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 21\cdot 67 + 56\cdot 67^{2} + 13\cdot 67^{3} + 16\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 10\cdot 67 + 4\cdot 67^{2} + 44\cdot 67^{3} + 10\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 + 47\cdot 67 + 59\cdot 67^{2} + 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 + 36\cdot 67 + 7\cdot 67^{2} + 31\cdot 67^{3} + 62\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 + 66\cdot 67 + 21\cdot 67^{2} + 51\cdot 67^{3} + 40\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 44 + 25\cdot 67 + 25\cdot 67^{2} + 38\cdot 67^{3} + 25\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 65 + 50\cdot 67 + 44\cdot 67^{2} + 50\cdot 67^{3} + 29\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,6)(2,7,8,5)$
$(1,2)(3,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,8)(3,6)(5,7)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,8)(6,7)$ $0$
$2$ $2$ $(1,7)(2,3)(4,5)(6,8)$ $0$
$2$ $4$ $(1,3,4,6)(2,7,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.