Properties

Label 2.2e7_5.8t17.1c1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{7} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$640= 2^{7} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} + 8 x^{4} - 10 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.2e3_5.4t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 229 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 12 + 33\cdot 229 + 177\cdot 229^{2} + 46\cdot 229^{3} + 101\cdot 229^{4} + 19\cdot 229^{5} + 201\cdot 229^{6} + 174\cdot 229^{7} +O\left(229^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 68 + 54\cdot 229 + 64\cdot 229^{2} + 182\cdot 229^{3} + 23\cdot 229^{4} + 204\cdot 229^{5} + 190\cdot 229^{6} + 210\cdot 229^{7} +O\left(229^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 95 + 196\cdot 229 + 130\cdot 229^{2} + 10\cdot 229^{3} + 208\cdot 229^{4} + 96\cdot 229^{5} + 181\cdot 229^{6} + 165\cdot 229^{7} +O\left(229^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 112 + 213\cdot 229 + 163\cdot 229^{2} + 149\cdot 229^{3} + 117\cdot 229^{4} + 108\cdot 229^{5} + 172\cdot 229^{6} + 161\cdot 229^{7} +O\left(229^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 117 + 15\cdot 229 + 65\cdot 229^{2} + 79\cdot 229^{3} + 111\cdot 229^{4} + 120\cdot 229^{5} + 56\cdot 229^{6} + 67\cdot 229^{7} +O\left(229^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 134 + 32\cdot 229 + 98\cdot 229^{2} + 218\cdot 229^{3} + 20\cdot 229^{4} + 132\cdot 229^{5} + 47\cdot 229^{6} + 63\cdot 229^{7} +O\left(229^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 161 + 174\cdot 229 + 164\cdot 229^{2} + 46\cdot 229^{3} + 205\cdot 229^{4} + 24\cdot 229^{5} + 38\cdot 229^{6} + 18\cdot 229^{7} +O\left(229^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 217 + 195\cdot 229 + 51\cdot 229^{2} + 182\cdot 229^{3} + 127\cdot 229^{4} + 209\cdot 229^{5} + 27\cdot 229^{6} + 54\cdot 229^{7} +O\left(229^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(2,6,7,3)$
$(1,6,5,7,8,3,4,2)$
$(1,4,8,5)(2,6,7,3)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$1$$4$$(1,5,8,4)(2,6,7,3)$$-2 \zeta_{4}$
$1$$4$$(1,4,8,5)(2,3,7,6)$$2 \zeta_{4}$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$4$$(2,6,7,3)$$-\zeta_{4} + 1$
$2$$4$$(2,3,7,6)$$\zeta_{4} + 1$
$2$$4$$(1,4,8,5)(2,7)(3,6)$$\zeta_{4} - 1$
$2$$4$$(1,5,8,4)(2,7)(3,6)$$-\zeta_{4} - 1$
$4$$4$$(1,7,8,2)(3,4,6,5)$$0$
$4$$8$$(1,6,5,7,8,3,4,2)$$0$
$4$$8$$(1,7,4,6,8,2,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.