Properties

Label 2.2e7_5.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{7} \cdot 5 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$640= 2^{7} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} + 38 x^{4} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 8 + 10\cdot 37 + 18\cdot 37^{2} + 5\cdot 37^{3} + 28\cdot 37^{4} + 14\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 20\cdot 37 + 34\cdot 37^{2} + 17\cdot 37^{3} + 14\cdot 37^{4} + 24\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 11 + 11\cdot 37 + 10\cdot 37^{2} + 33\cdot 37^{3} + 22\cdot 37^{4} + 36\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 14 + 33\cdot 37 + 23\cdot 37^{2} + 29\cdot 37^{3} + 5\cdot 37^{4} + 24\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 23 + 3\cdot 37 + 13\cdot 37^{2} + 7\cdot 37^{3} + 31\cdot 37^{4} + 12\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 26 + 25\cdot 37 + 26\cdot 37^{2} + 3\cdot 37^{3} + 14\cdot 37^{4} +O\left(37^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 27 + 16\cdot 37 + 2\cdot 37^{2} + 19\cdot 37^{3} + 22\cdot 37^{4} + 12\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 29 + 26\cdot 37 + 18\cdot 37^{2} + 31\cdot 37^{3} + 8\cdot 37^{4} + 22\cdot 37^{5} +O\left(37^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.