Properties

Label 2.2e7_3e3.24t22.8c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{7} \cdot 3^{3}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$3456= 2^{7} \cdot 3^{3} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} - 24 x^{3} + 20 x^{2} - 8 x + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 11 + 9\cdot 41 + 34\cdot 41^{2} + 6\cdot 41^{3} + 35\cdot 41^{4} + 11\cdot 41^{5} + 28\cdot 41^{6} + 15\cdot 41^{7} + 22\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 1 + \left(20 a + 25\right)\cdot 41 + \left(24 a + 18\right)\cdot 41^{2} + \left(33 a + 26\right)\cdot 41^{3} + \left(33 a + 38\right)\cdot 41^{4} + \left(33 a + 9\right)\cdot 41^{5} + \left(29 a + 16\right)\cdot 41^{6} + \left(29 a + 29\right)\cdot 41^{7} + \left(14 a + 25\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 11 + \left(20 a + 28\right)\cdot 41 + \left(16 a + 30\right)\cdot 41^{2} + \left(7 a + 20\right)\cdot 41^{3} + \left(7 a + 24\right)\cdot 41^{4} + \left(7 a + 36\right)\cdot 41^{5} + \left(11 a + 30\right)\cdot 41^{6} + \left(11 a + 6\right)\cdot 41^{7} + \left(26 a + 40\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 38 a + \left(31 a + 10\right)\cdot 41 + \left(4 a + 1\right)\cdot 41^{2} + \left(34 a + 31\right)\cdot 41^{3} + \left(5 a + 12\right)\cdot 41^{4} + \left(13 a + 29\right)\cdot 41^{5} + \left(14 a + 20\right)\cdot 41^{6} + \left(9 a + 6\right)\cdot 41^{7} + \left(38 a + 23\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 32 + \left(9 a + 26\right)\cdot 41 + \left(36 a + 24\right)\cdot 41^{2} + \left(6 a + 5\right)\cdot 41^{3} + \left(35 a + 37\right)\cdot 41^{4} + \left(27 a + 21\right)\cdot 41^{5} + \left(26 a + 9\right)\cdot 41^{6} + \left(31 a + 20\right)\cdot 41^{7} + \left(2 a + 5\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 8 a + \left(23 a + 8\right)\cdot 41 + \left(11 a + 36\right)\cdot 41^{2} + \left(17 a + 23\right)\cdot 41^{3} + \left(9 a + 2\right)\cdot 41^{4} + \left(36 a + 12\right)\cdot 41^{5} + \left(13 a + 20\right)\cdot 41^{6} + \left(26 a + 11\right)\cdot 41^{7} + \left(4 a + 31\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 33 a + 24 + \left(17 a + 28\right)\cdot 41 + \left(29 a + 6\right)\cdot 41^{2} + \left(23 a + 23\right)\cdot 41^{3} + \left(31 a + 13\right)\cdot 41^{4} + \left(4 a + 29\right)\cdot 41^{5} + \left(27 a + 25\right)\cdot 41^{6} + \left(14 a + 35\right)\cdot 41^{7} + \left(36 a + 18\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 7 + 28\cdot 41 + 11\cdot 41^{2} + 26\cdot 41^{3} + 40\cdot 41^{4} + 12\cdot 41^{5} + 12\cdot 41^{6} + 38\cdot 41^{7} + 37\cdot 41^{8} +O\left(41^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4)(3,8,7)$
$(1,5,8,2)(3,7,4,6)$
$(1,3)(4,8)(6,7)$
$(1,8)(2,5)(3,4)(6,7)$
$(1,6,8,7)(2,3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,4)(6,7)$$-2$
$12$$2$$(1,3)(4,8)(6,7)$$0$
$8$$3$$(1,5,7)(2,6,8)$$-1$
$6$$4$$(1,5,8,2)(3,7,4,6)$$0$
$8$$6$$(1,8)(2,3,7,5,4,6)$$1$
$6$$8$$(1,7,3,5,8,6,4,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,6,3,2,8,7,4,5)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.