Properties

Label 2.2e7_3e3.24t22.3
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{7} \cdot 3^{3}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$3456= 2^{7} \cdot 3^{3} $
Artin number field: Splitting field of $f= x^{8} + 8 x^{6} + 6 x^{4} - 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 28 + \left(9 a + 25\right)\cdot 29 + \left(13 a + 14\right)\cdot 29^{2} + 2 a\cdot 29^{3} + \left(11 a + 17\right)\cdot 29^{4} + \left(4 a + 23\right)\cdot 29^{5} + \left(a + 13\right)\cdot 29^{6} + \left(13 a + 11\right)\cdot 29^{7} + \left(24 a + 3\right)\cdot 29^{8} + \left(15 a + 16\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 3 + 24\cdot 29 + 17\cdot 29^{2} + 13\cdot 29^{3} + 18\cdot 29^{4} + 11\cdot 29^{5} + 17\cdot 29^{6} + 6\cdot 29^{7} + 7\cdot 29^{8} + 20\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 3 }$ $=$ $ a + 26 + \left(13 a + 2\right)\cdot 29 + \left(24 a + 19\right)\cdot 29^{2} + \left(21 a + 5\right)\cdot 29^{3} + 14\cdot 29^{4} + \left(12 a + 3\right)\cdot 29^{5} + 18 a\cdot 29^{6} + \left(21 a + 1\right)\cdot 29^{7} + \left(9 a + 19\right)\cdot 29^{8} + \left(24 a + 7\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 2 + \left(15 a + 9\right)\cdot 29 + \left(4 a + 12\right)\cdot 29^{2} + \left(7 a + 3\right)\cdot 29^{3} + \left(28 a + 25\right)\cdot 29^{4} + \left(16 a + 4\right)\cdot 29^{5} + \left(10 a + 22\right)\cdot 29^{6} + \left(7 a + 3\right)\cdot 29^{7} + \left(19 a + 17\right)\cdot 29^{8} + \left(4 a + 3\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 1 + \left(19 a + 3\right)\cdot 29 + \left(15 a + 14\right)\cdot 29^{2} + \left(26 a + 28\right)\cdot 29^{3} + \left(17 a + 11\right)\cdot 29^{4} + \left(24 a + 5\right)\cdot 29^{5} + \left(27 a + 15\right)\cdot 29^{6} + \left(15 a + 17\right)\cdot 29^{7} + \left(4 a + 25\right)\cdot 29^{8} + \left(13 a + 12\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 26 + 4\cdot 29 + 11\cdot 29^{2} + 15\cdot 29^{3} + 10\cdot 29^{4} + 17\cdot 29^{5} + 11\cdot 29^{6} + 22\cdot 29^{7} + 21\cdot 29^{8} + 8\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 28 a + 3 + \left(15 a + 26\right)\cdot 29 + \left(4 a + 9\right)\cdot 29^{2} + \left(7 a + 23\right)\cdot 29^{3} + \left(28 a + 14\right)\cdot 29^{4} + \left(16 a + 25\right)\cdot 29^{5} + \left(10 a + 28\right)\cdot 29^{6} + \left(7 a + 27\right)\cdot 29^{7} + \left(19 a + 9\right)\cdot 29^{8} + \left(4 a + 21\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 8 }$ $=$ $ a + 27 + \left(13 a + 19\right)\cdot 29 + \left(24 a + 16\right)\cdot 29^{2} + \left(21 a + 25\right)\cdot 29^{3} + 3\cdot 29^{4} + \left(12 a + 24\right)\cdot 29^{5} + \left(18 a + 6\right)\cdot 29^{6} + \left(21 a + 25\right)\cdot 29^{7} + \left(9 a + 11\right)\cdot 29^{8} + \left(24 a + 25\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,7)(2,3,5)$
$(1,5)(2,7)(3,6)$
$(1,7,5,3)(2,8,6,4)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,6,5,2)(3,4,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $-2$ $-2$
$12$ $2$ $(1,5)(2,7)(3,6)$ $0$ $0$
$8$ $3$ $(1,4,2)(5,8,6)$ $-1$ $-1$
$6$ $4$ $(1,7,5,3)(2,8,6,4)$ $0$ $0$
$8$ $6$ $(1,6,4,5,2,8)(3,7)$ $1$ $1$
$6$ $8$ $(1,3,4,2,5,7,8,6)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,7,4,6,5,3,8,2)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.