Properties

Label 2.2e7_3e2.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{7} \cdot 3^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1152= 2^{7} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{5} + 14 x^{4} - 32 x^{3} + 28 x^{2} - 48 x + 34 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 233 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 40 + 40\cdot 233 + 161\cdot 233^{2} + 203\cdot 233^{3} + 128\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 75\cdot 233 + 98\cdot 233^{2} + 101\cdot 233^{3} + 63\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 + 193\cdot 233 + 39\cdot 233^{2} + 43\cdot 233^{3} + 58\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 94 + 157\cdot 233 + 166\cdot 233^{2} + 117\cdot 233^{3} + 215\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 135 + 57\cdot 233 + 188\cdot 233^{2} + 132\cdot 233^{3} + 174\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 179 + 139\cdot 233 + 23\cdot 233^{2} + 149\cdot 233^{3} + 93\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 188 + 57\cdot 233 + 71\cdot 233^{2} + 172\cdot 233^{3} + 17\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 199 + 210\cdot 233 + 182\cdot 233^{2} + 11\cdot 233^{3} + 180\cdot 233^{4} +O\left(233^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,6)(5,7)$
$(1,3)(2,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $0$
$2$ $4$ $(1,4,5,8)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.