Properties

Label 2.2e7_3e2.4t3.7
Dimension 2
Group $D_4$
Conductor $ 2^{7} \cdot 3^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1152= 2^{7} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 4 x^{6} + 20 x^{5} + 4 x^{4} - 20 x^{3} - 4 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 3\cdot 73 + 68\cdot 73^{2} + 72\cdot 73^{3} + 8\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 41\cdot 73 + 52\cdot 73^{2} + 8\cdot 73^{3} + 47\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 49\cdot 73 + 12\cdot 73^{2} + 3\cdot 73^{3} + 24\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 17\cdot 73 + 10\cdot 73^{2} + 52\cdot 73^{3} + 36\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 41\cdot 73 + 65\cdot 73^{2} + 63\cdot 73^{3} + 52\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 + 2\cdot 73 + 55\cdot 73^{2} + 17\cdot 73^{3} + 3\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 69 + 10\cdot 73 + 15\cdot 73^{2} + 12\cdot 73^{3} + 53\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 71 + 51\cdot 73 + 12\cdot 73^{2} + 61\cdot 73^{3} + 65\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,6)(5,7)$
$(1,2)(3,8)(4,7)(5,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,3)(4,5)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,7)(5,6)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $4$ $(1,6,8,7)(2,4,3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.