Properties

Label 2.2e7_3e2.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 2^{7} \cdot 3^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1152= 2^{7} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{4} - 6 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 23 + 20\cdot 73 + 65\cdot 73^{2} + 69\cdot 73^{3} + 39\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 28\cdot 73 + 25\cdot 73^{2} + 64\cdot 73^{3} + 16\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 44\cdot 73 + 47\cdot 73^{2} + 8\cdot 73^{3} + 56\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 + 52\cdot 73 + 7\cdot 73^{2} + 3\cdot 73^{3} + 33\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.