Properties

Label 2.2e7_3.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{7} \cdot 3 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$384= 2^{7} \cdot 3 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} - 4 x^{5} + 12 x^{4} + 4 x^{3} + 4 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 5\cdot 83 + 14\cdot 83^{2} + 25\cdot 83^{3} + 41\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 53\cdot 83 + 50\cdot 83^{2} + 55\cdot 83^{3} + 61\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 76\cdot 83 + 48\cdot 83^{2} + 69\cdot 83^{3} + 71\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 + 57\cdot 83 + 77\cdot 83^{2} + 82\cdot 83^{3} + 43\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 + 26\cdot 83 + 25\cdot 83^{2} + 71\cdot 83^{3} + 8\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 69 + 80\cdot 83 + 75\cdot 83^{2} + 13\cdot 83^{3} + 54\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 74 + 49\cdot 83 + 23\cdot 83^{2} + 2\cdot 83^{3} + 19\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 80 + 64\cdot 83 + 15\cdot 83^{2} + 11\cdot 83^{3} + 31\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,7,4)(3,5,6,8)$
$(1,3)(2,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,4)(3,6)(5,8)$ $-2$
$2$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $0$
$2$ $2$ $(1,8)(2,6)(3,4)(5,7)$ $0$
$2$ $4$ $(1,2,7,4)(3,5,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.