Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ |
$=$ |
$ 9 + 2\cdot 59 + 35\cdot 59^{2} + 26\cdot 59^{3} + 23\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
$r_{ 2 }$ |
$=$ |
$ 25 + 25\cdot 59 + 44\cdot 59^{2} + 17\cdot 59^{3} + 12\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
$r_{ 3 }$ |
$=$ |
$ 34 + 33\cdot 59 + 14\cdot 59^{2} + 41\cdot 59^{3} + 46\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
$r_{ 4 }$ |
$=$ |
$ 50 + 56\cdot 59 + 23\cdot 59^{2} + 32\cdot 59^{3} + 35\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
Cycle notation |
$(1,4)$ |
$(1,2)(3,4)$ |
Character values on conjugacy classes
Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
$1$ |
$1$ |
$()$ |
$2$ |
$1$ |
$2$ |
$(1,4)(2,3)$ |
$-2$ |
$2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
$2$ |
$2$ |
$(1,4)$ |
$0$ |
$2$ |
$4$ |
$(1,3,4,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.